Preparation, structure, derivatisation and N M R data of cyclohexane-

 1,2-diacetal protected carbohydratesPeter G rice, Steven V. L ey,* J örg P ietruszka, H enning W. M . Priepke and Stuart L. W arriner

D epartment of C hemistry, U niversity of C ambridge, Lensfield R oad, Cambridge CB 2 1EW, UK

Acid catalysed reaction of monosaccharides with 1,1,2,2-tetramethoxycyclohexane results in selective protection of vicinal, diequatorial, diol functionality as a cyclohexane-1,2-diacetal (CDA). This new methodology complements classical cyclic acetal protecting group strategies which in general arenot able to mask diols with such diequatorial stereochemistry. The resulting C D A protected derivatives can be readily functionalised to give rapid access to numerous key building blocks for oligosaccharide and natural product synthesis.

As an extension of our dispiroketal (dispoke) methodology we recently introduced the concept of 1,2-diacetals as new, regioselective protecting groups for diequatorial 1,2-diol units in carbohydrates. ${ }^{1-4}$ In particular, cyclohexane-1,2-diacetal (CDA) protection of monosaccharide units offers rapid access to important building blocks for oligosaccharide synthesis., ${ }^{3,5}$

In the reaction of 1,1,2,2-tetramethoxycyclohexane 1 with pyranosides such as $\mathbf{2}$ regioselective protection of the vicinal diequatorial diol unit is observed (Scheme 1). The selectivity

Not formed due to steric clash

Not formed due to
loss of anomeric
stabilisation

Scheme 1

arises from the combination of two effects. Protection of the 3,4 -diequatorial diol to give product $\mathbf{3}$ is favoured over the 2,3cis diol as this leads to the sterically less demanding trans ring fusion between the dioxane ring (formed by acetalisation) and the pyranoside Only one diastereoisomer of this compound is produced as the configuration of the acetal centres is controlled by the anomeric effect. The same regulatory elements also control the selectivity of reactions using dispiroketal methodology, however, the use of the more stable 1,1,2,2-tetramethoxycyclohexane 1 instead of 6,6'-bis-dihydropyran (bis-DHP) offers someadvantages, particularly for carbohydratechemistry. Dispiroketal protection reactions are performed in boiling chloroform which can lead to solubility problems when the polyol substrate is very polar. The use of boiling methanol in CDA protections ensures dissolution of the substrate and thermodynamic control in the resulting reaction. As a further
advantage, the methoxy groups in the reaction product, e.g. 3 can be used as reporter groups in the ${ }^{1} \mathrm{H}$ N M R spectra. In this work we report full experimental details for the protection reactions which have been performed, as well as some useful derivatisations and deprotecting conditions for the resulting CDA protected saccharides. The key NMR characteristics of CDA protected substrates will also be described

Diacetal 1 is easily synthesised from commercially available cyclohexane-1,2-dione by treatment with methanol, trimethyl orthoformate and catalytic concentrated sulfuric acid (Scheme 2) or may now be obtained from commercial sources. ${ }^{6}$

1

4

$+$
$\delta_{\mathrm{C}} 101.40$

Scheme 2
With $\mathbf{1}$ in hand the protection of methyl α-D-mannopyranoside 4, which did not react with bis-DHP under the standard conditions due to its poor solubility in chloroform, was attempted. Treatment of this monosaccharide with 1.4 equiv. of 1 in boiling methanol with added trimethyl orthoformate and catalytic (\pm)-camphorsulfonic acid (CSA) for 16 h yielded the 3,4-protected mannopyranoside 5 as the major reaction

Fig. 1 Representation of the structure of $\mathbf{5}$ as determined by X -ray crystal structure analysis
product in 48% yield (Scheme 2). Purification was easily achieved by flash column chromatography and recrystallisation from diethyl ether. The use of trimethyl orthoformate in the reaction prevents any decomposition of the starting acetal by adventitious water (e.g. water of crystallisation in the sugar substrate). Competitive protection of the carbohydrate as an orthoformate is not observed as protection with theCDA group and formation of the orthoester are mutually exclusive ${ }^{7}$ The higher thermodynamic stability of the CDA adducts ensures that these are the only products observed. Clearly the reaction conditions for preparation of reagent $\mathbf{1}$ and the protection are very similar, indeed it is possible to use the cyclohexane-1,2dione directly in the reaction. ${ }^{4} \mathrm{H}$ owever, the hygroscopic nature of cyclohexane-1,2-dione means that we use the easy to handle, stable diacetal $\mathbf{1}$ as our preferred reagent in these reactions.
The structure of the CDA protected saccharide 5 was unambiguously assigned by X-ray crystallography (Fig. 1). ${ }^{8}$ The crystal structure clearly confirmed that, as expected, both 0methyl groups in the cyclohexyl moiety of 5 were arranged axially, and the three annulated rings all existed as chair conformers. Comparison with the published structure of methyl α -d-mannopyranoside reveals little change in the conformation of the pyranoside ring. ${ }^{9}$ The gauche-trans (gt) arrangement of the anomeric methoxy group allows for stabilisation from the exo-anomeric effect and the 5-C-6-C conformation is gg, in agreement with other published mannopyranoside X -ray structures. This conformation allows maximum hyperconjugative stabilisation between $5-\mathrm{CH}, 6-\mathrm{CO}$ and $6-\mathrm{CH}, 5-\mathrm{CO}$ bonds (the gauche effect). ${ }^{10,11}$
The 2,3 -cis diol fragment reacted only to a minor extent (11\%). In this case the product is the dioxolane 6 where the CDA group has reacted in a manner analogous to a cyclohexylidene system (Scheme 2). The regiochemistry of protection was confirmed by derivatisation to the diacetate which exhibited the expected downfield shift for $4-\mathrm{H}(\delta 3.72$ in $6 ; \delta 5.02$ in 7) in the ${ }^{1} \mathrm{H}$ NMR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 is also very similar to the related acetonide, ${ }^{12}$ both spectra showing abnormal H-H coupling constants indicating distortion of the pyranose ring away from the idealised chair form by the annulated five membered ring. The five membered ring structure was also confirmed by the significant downfield shift of one of the acetal carbons in the ${ }^{13} \mathrm{C}$ N M R spectrum ($\delta 111.25$ and 101.40 for 6 compared to 99.22 and 98.77 for 5) which is in the chemical shift range of the 1,3-dioxolanes derived from 1,2-diols and acetone (108-112 ppm). ${ }^{13}$ The configuration of the stereogenic centre in the cyclohexane moiety of 6 was inferred from NOE experiments with significant NOEs observed between the acetal methoxy groups and $2-\mathrm{H}$ and $3-\mathrm{H}$. This shows that these sterically demanding substituents are located on the exo-face of the curved system constructed by formation of the dioxolane. Treatment of the by-product $\mathbf{6}$ in boiling methanol with catalytic CSA for 4 days enabled 5 to be obtained in 35% yield together with 16% of recovered starting material. This result clearly demonstrates that $\mathbf{5}$ is the thermodynamically most stable product and that the acetalisation process is reversible under the protection conditions.

The new methodology was also applicable to the ethylthio-

Table 1

${ }^{\text {a }}$ Other isomers were visible by TLC but were not isolated. ${ }^{\text {b }}$ U nder standard conditions. W ith 6-TBD PS galactose as starting material only the α isomer is formed. ${ }^{\text {c }}$ Inseparable. ${ }^{d}$ Separable.
and phenylseleno- α-mannopyranosides, which are both potential glycosyl donors. Reaction with $\mathbf{1}$ under our standard conditions produced the 3,4-protected crystalline sugars $\mathbf{8}$ and $\mathbf{1 0}$ as the main reaction products in comparable yields and selectivities to the 0 -glycoside substrate (Table 1, Entries 2, 3). These

Fig. 2 Representation of the structure of $\mathbf{1 6}$ as determined by X-ray crystal structure analysis
yields compare very favourably with classical approaches to this protection pattern. For example, the preparation of methyl 3,4-di-O-benzylmannopyranoside is a multistep procedure (7 steps from mannose) which produces the target compound in less than 40% yield. ${ }^{14} 3,4$-Protection can also be achieved using Thiem's two step procedure for the synthesis of methyl 3,4-0-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)mannopyranoside in 61% yield. ${ }^{15}$ This protecting group is, however, rather labile and often incompatible with conventional transformations in carbohydrate chemistry. Our new CDA protected mannosides are, therefore, valuable alternatives to established monosaccharide building blocks. For example, both 8 and 10 can be readily manipulated to give either glycosyl donors or glycosyl acceptors. ${ }^{16}$

R hamnose (entries 4,5) and lyxose (entry 6) derived pyranosides, which also bear an axially oriented 2 -hydroxy group, could similarly be selectively protected at the 3 - and 4 -positions in good yields (compounds 12, 14 and 17). Dioxolanes 13, 15 and 18 were also produced as the major by-products. These and other CDA reactions also produce synthetically irrelevant amounts of other minor products. Interestingly, in the case of the S-ethyl 1-thiorhamnoside another less polar and crystalline side product could be isolated in 4% yield and was unambiguously identified by X-ray crystal structure analysis to be the 3,4protected isomer 16, where the stereochemistry of both CDA acetal centres was inverted relative to the major compound 14 (Fig. 2). ${ }^{8}$ This necessitates the adoption of a twist boat conformation by the central dioxane ring. In this conformation nearly all anomeric stabilisation is retained. ${ }^{17} \mathrm{H}$ ence destabilisation of this isomer arises solely as a result of the boat conformation. While the pyranoside fragment showed normal bond lengths, it should be noted that the cyclohexane ring in the protecting group exhibits a rather short C-C bond length of $1.48 \AA$ ($2^{\prime}-\mathrm{C}-$ $3^{\prime}-C$) and a rather long distance between $3^{\prime}-C$ and $4^{\prime}-C$ of 1.55 \AA. The C-O bond lengths at the anomeric centres in the CDA group varied from $1.41 \AA\left(1^{\prime}-C-1^{\prime}-0\right)$ to $1.44 \AA\left(2^{\prime}-C-2^{\prime}-0\right)$. In a related area, Waagen et al. recently published X -ray data for dihydroxyacetone dimers. ${ }^{18}$ Interestingly in this case a $1: 1$ ratio of chair and boat isomers was obtained under nearly identical reaction conditions $\left[\mathrm{EtOH}, \mathrm{HC}(\mathrm{OM} \mathrm{e})_{3}, \mathrm{cat} . \mathrm{H}_{2} \mathrm{SO}_{4}, 96 \mathrm{~h}, 4^{\circ} \mathrm{C}\right]$.
The next examples of the protection reactions studied were performed with galacto- and arabino-pyranosides which all bear an axial hydroxy group at 4-C. Reaction of these substrates with 1 under standard conditions unfortunately gave less satisfactory results. A lthough the desired 2,3-adducts $\mathbf{2 0}$ and $\mathbf{2 4}$ were obtained in about 40% yield, TLC revealed a multitude of side products. Extensive chromatography was required to furnish clean products. The galactoside $\mathbf{2 0}$ was obtained only as a 4:1 mixture of α - and β-anomers, indicating a higher tendency for these substrates to anomerise under the reaction conditions. A nomerisation could be suppressed if 6-0-tert-butydiphenylsilyl ($6-0-T B D P S$) protected galactose was used as the starting material. U nder standard reaction conditions the desilylated dioxane 19 was obtained as the clean α-anomer. This could be
accounted for by noting that CDA protection inhibits the anomerisation process by resisting formation of the cyclic oxonium ion. ${ }^{5}$ Hence, the protected galactoside anomerises more slowly than the starting material. The improved selectivity in the reaction may arise because equilibration to the desired CDA structure is more rapid with the silylated derivative. This could be due to the absence of the 6 -hydroxy group in competing equilibration processes and also to the improved solubility of the substrate. A fter protection desilylation then follows as the slowest process in the system. This may be reinforced by the bulky protecting group on the 6 -position making the α configuration of the substratemorefavourable. M ethanol was required to achieve equilibration to the desired CDA structure. When the solvent was switched to chloroform in this reaction we obtained the silylated dioxolane 21 in 41% yield as themajor reaction product while silylated dioxane 22 was produced in only 11% yield.
M ethyl α-d-glucopyranoside has al so been converted into an inseparable 6:4 mixture of 2,3- and 3,4-protected monosaccharides 26 and $\mathbf{2 5}$ using similar methods (entry 9). The two regioisomers could be separated by transformation into the 6-$0-T$ BDPS derivatives 28 and 29 . This is the only reaction where CDA and dispoke methodology furnished a comparable ratio of regioisomers. ${ }^{2}$ U nsurprisingly, no dioxolane products were observed in the reaction of methyl glucoside, although a further product, which is probably the twisted boat isomer 27, could be isolated in 2\% yield.
In conclusion we have demonstrated that CDA protection is useful for blocking diequatorial diol units in pyranosides, especially in the case of rhamnose and mannose derivatives where selective protection of the 3 and 4 positions was previously only attainable via multistep protection and deprotection procedures. ${ }^{14,15,19}$

D erivatisations and deprotections of CDA protected monosaccharides

In order to demonstrate the stability of the CDA protected monosaccharides to standard reaction conditions used in carbohydrate chemistry and to obtain useful precursors for oligosaccharide synthesis, procedures for selectively blocking one of the two remaining hydroxy groups in the mannosides 5 , 8 and 10 were investigated. Protection of the primary 6 -hydroxy function was easily accomplished by silylation with tertbutyldiphenylsilyl chloride (TBDPS-CI) under standard conditions to give compounds $\mathbf{3 0}, 31$ and 32 in almost quantitative yield (Table 2, entries 1-3). Selective benzoylation of the 6hydroxy group was also attempted. However, when thioglycoside 8 was mixed with one equivalent of benzoyl chloride in pyridine at room temperature a mixture of the 6 -monobenzoate 33 , the 2 -monobenzoate 34 , and the 2,6-dibenzoate 35 was obtained (entry 4). To increase the selectivity for the primary position it was necessary to convert 8 into its tributylstannyl ether which was benzoylated in situ to produce the desired 6 -benzoate 33 in 81% yield together with minor amounts of dibenzoate 35 (entry 5). Alternatively, the 2-benzoate 34 was available in a two step sequence starting from silyl ether 31 in 71% overall yield (entry 6). A pplication of the stannyl ether methodology to selenoglycoside 10 furnished the 6 -benzoate $\mathbf{3 6}$ in 76\% yield (entry 7).
R apid selective protection of the 2-position of CDA mannosides 5 and $\mathbf{8}$ could, surprisingly, be achieved by benzylation with benzyl bromide and sodium hydride in DM F , yielding the 2-benzyl ethers 37 and 38 in 75% and 84% respectively (entries $8,9)$. The regioselectivity was unambiguously assigned from the multiplicity of the hydroxy proton in the ${ }^{1} \mathrm{H}$ NM R and by the observation of a long range $\mathrm{C}-\mathrm{H}$ correlation between the benzylic protons and 2-C of the sugar ring in the H M BC spectrum. The high selectivity for the 2-hydroxy group function is quite surprising although a similar high preference for the secondary over the primary hydroxy group has been reported for the benzylation of methyl 3,4-0-isopropylidene- α-D-galactopyrano-

Table 2

Entry	Starting material	Conditions	Product	R	R^{2}	R^{6}	Y ield (\%)
1	5	TBD PS-CITHF, Imidazole	30	OM e	H	TBDPS	100
2	8	TBD PS-CI TH F, Imidazole	31	SEt	H	TBDPS	97
3	10	TBD PS-CI TH F, Imidazole	32	SePh	H	TBDPS	95
4	8	$\mathrm{BzCl}, \mathrm{pyr} 1$ equiv.	33	SEt	H	Bz	54
			34	SEt	Bz	H	13
			35	SEt	Bz	Bz	28
5	8	$\mathrm{i},\left(\mathrm{Bu} \mathrm{S}_{3} \mathrm{Sn}\right)_{2} \mathrm{O} ; \mathrm{ii}, \mathrm{BzCl}$	33	SEt	H	Bz	81
			34	SEt	Bz	H	0
			35	SEt	Bz	Bz	8
6	31	i, BzCl, pyr; ii, TBAF	34	SEt	Bz	H	71
7	10	i, $\left(\mathrm{Bu} \mathrm{S}^{\text {Sn }}\right)_{2} \mathrm{O} ; \mathrm{ii}, \mathrm{BzCl}$	36	SePh	H	Bz	76
8	5	$\mathrm{NaH}, \mathrm{BnBr} 1$ equiv. DM F	37	OMe	Bn	H	75
9	8	$\mathrm{NaH}, \mathrm{BnBr} 1$ equiv. DM F	38	SEt	Bn	H	84

Scheme 3 Reagents and yields: (a) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imidazole, toluene, 60%; (b) $\mathrm{Pd} / \mathrm{C}, \mathrm{NEt} \mathrm{N}_{2} \mathrm{H}$, cyclohexane, $\mathrm{H}_{2}, 83 \%$; (c) $\mathrm{i},(\mathrm{COCl})_{2}, \mathrm{DM} \mathrm{SO}, \mathrm{NEt}_{3}$; ii , $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{Br}^{-}, \mathrm{BuLi}, 63 \%$; (d) i, SiM e2 Cl_{2}, Pyr ; ii, $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{CO}_{2} \mathrm{M} \mathrm{e;} \mathrm{(e)} \mathrm{NIS}, \mathrm{MeN} \mathrm{O}_{2}, 61 \%$ (3 steps)
side. ${ }^{20}$ This reversal of selectivity is not easily explained, however, it should be noted that benzylation is the least sterically demanding of these selective derivatisations and hence will favour the 6 -position less than benzoylation or silylation. Furthermore the procedure involves formation of the oxyanion prior to reaction. The pK_{a} of the two hydroxy groups will affect the population of each oxyanion in solution and their reactivity. The oxyanion at the 2 -position is probably more basic and hence more reactive although it will be present in a lower equilibrium concentration. This would account for the observed reactivity profile. This interesting result, however, means that one step procedures are available for selective protection of either the primary 6 - or the secondary 2 -hydroxy groups of these key mannoside building blocks.

Other transformations which demonstrate the compatability of CDA protection with common organic transformations are shown in Scheme 3. For instance, the CDA protected mannoside 5 was converted, according to the procedure of G aregg and Samuelsson, via the iodide 39 into the 2,3-protected Drhamnoside $40 .{ }^{21}$ Although d-rhamnose is a rather uncommon sugar in nature, $\alpha-1,2$ - and $\alpha-1,3$-oligo-d-rhamnosides were recently reported as the main components of the polysaccharide portion of A-band lipopolysaccharide from a
mutant of Pseudomonas aeruginosa strain PA01. ${ }^{22}$ The mannoside 37 could also be transformed via Swern oxidation followed by Wittig reaction into vinyl pyranoside 41. This compound provides versatile functionality for elaboration for carbohydrate based natural product synthesis. A pplication of a silicon tether based strategy developed by Stork and Bols to S-ethyl glycoside 33 produced the β-mannoside $42 .{ }^{23,24}$ These procedures clearly demonstrate the stability of the CDA protecting group to a variety of standard organic transformations.

Deprotection of the CDA moiety is readily achieved under acidic conditions (Table 3). Dimethylation, dibenzylation or dibenzoylation of CDA protected methyl mannoside 5 yields the fully protected glycosides 43,44 and 45 respectively. These substrates were used to develop conditions for the deprotection reaction. Firstly aqueous acids were used under different reaction conditions to remove the CDA unit. Deprotection with TFA-water (20:1) produced the unprotected methyl mannosides 46 and 48 instantaneously in good and excellent yields (entries 1 and 4). CDA removal with more dilute acids (entries 2 and 3) required longer reaction times and higher temperatures but also furnished unprotected 47 in good yield. Deprotection of dimethylated CDA mannoside 43

Table 3

gives rapid access to methyl α-d-curamicoside, a naturally occurring component of orthosomycin antibiotics. ${ }^{15,25}$ We have also demonstrated that these deprotection conditions do not cleave glycosidic linkages and hence cyclohexane-1,2diacetals are valuable tools for rapid oligosaccharide assembly. $1,1,16$

N M R characteristics of products from C DA protection reactions

 In the course of these investigations more than 40 different compounds have been prepared from the CDA reactions. The NM R spectra of these species contain useful diagnostic information for the determination of the product structures. The major reaction products, the CDA dioxane systems have a high degree of symmetry in their structure which is reflected in the NMR spectra. In the ${ }^{1} \mathrm{H} N M R$ spectrum the two methoxy singlets are the characteristic markers. These occur between 3.10 and 3.25 ppm and are usually separated by only $0.01-0.02 \mathrm{ppm}$, although this separation may rise on subsequent protection, particularly when TBD PS is placed on the 6-hydroxy group (the difference in these cases is nearer 0.1 ppm). Coupling constants around the pyranose ring are identical to the free pyranose systems indicating that there is no distortion of the usual chair conformation of the sugar. The ${ }^{13} \mathrm{C} N \mathrm{M}$ R spectrum is the most helpful in the identification of a CDA protected product. The two acetal centres of the protecting group resonate at very similar chemical shifts in the range $98.5-99.5 \mathrm{ppm}$. The methoxy signals occur between 46 and 47 ppm , usually separated by less than 0.2 ppm and the remainder of the cyclohexane ring gives two sets of two peaks, at 21.3 and 27.0 ppm .The principal by-products, the dioxolane structures are far less symmetrical which again is reflected in their N M R spectra. The methoxy signals occur at around 3.26 and 3.32 ppm in the ${ }^{1} \mathrm{H}$ N M R spectrum. The protons on the sugar ring also show abnormal coupling constants indicating distortion of the pyranose system. ${ }^{13} \mathrm{C}$ NMR spectroscopy is again very diagnostic. The acetal carbons resonate very differently at around 101 and 111 ppm and the methoxy signals at 49 and 50 ppm . The cyclohexane signals are also spread out giving peaks around $21.5,22.9,30.7$ and 35.5 ppm . In general the carbon and proton NMR spectra are highly homologous to those of the related isopropylidene protected systems.

The EI mass spectra of all products from these protection reactions show characteristic fragments which arise from the diacetal group. M olecular ions readily lose methyl groups, whilst cleavage of the protecting group at the sugar ring gives a series of peaks at $\mathrm{m} / \mathrm{z} 175\left[\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}_{2} \mathrm{M} \mathrm{eH}{ }^{+}\right]$, 161, 143, 127 and 111. The dioxolane by-products also tend to show a peak at 101 which is usually absent in the desired CDA compounds, however this in itself provides no proof of structure.

C onclusion

Cyclohexane diacetals provide new opportunities for rapid selective protection of monosaccharides. Selective protection of the vicinal diequatorial diol relationship complements the classical chemistry of isopropylidene and benzylidene acetals and as such greatly improves the efficiency of monosaccharide manipulations. In this paper we have demonstrated the efficacy of this methodology on a wide variety of monosaccharide precursors and have shown the stability of the protecting group to a number of standard manipulations. Procedures for high yielding cleavage of the protecting group under acidic conditions have also been developed. This chemistry forms the basis of the assembly of versatile building blocks for oligosaccharide synthesis.

In further studies we have also shown that the CDA protecting group can tune the reactivity of glycosyl donors, allowing highly convergent oligosaccharide assembly. ${ }^{1,5,16}$ CDA and related BDA (butane-2,3-diacetal) protected units now rest at the heart of our strategy for the efficient synthesis of complex carbohydrates.

Experimental

G eneral procedures

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DRX-500, a Bruker AM - 400 or a Bruker AC-200 spectrometer as solutions in deuteriochloroform (CDCl_{3}) using the residual CHCl_{3} as reference (7.26 ppm) unless otherwise stated. All multiplets were analysed as first order couplings. ${ }^{13} \mathrm{C}$ spectra were recorded on a Bruker AC-200 (50.8 M Hz) or Bruker AM-400 (100.12 MHz) spectrometer and chemical shifts are quoted relative to the middle peak of $\mathrm{CDCl}_{3}(77 \mathrm{ppm})$. Coupling constants are quoted in Hz . Low and high resolution mass spectra were recorded under EI or positive FAB conditions using a K ratos MS 890 spectrometer. M icroanalyses were performed in the University of Cambridge microanalyses laboratory. Optical rotations were measured using an Optical activity AA-1000 polarimeter and are quoted in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Ether refers to diethyl ether and petrol refers to light petroleum (bp $40-60^{\circ} \mathrm{C}$). All solvents were purified before use: light petroleum was redistilled, benzene, toluene, acetonitrile and dichloromethane were distilled from calcium hydride, ether and tetrahydrofuran (THF) were distilled from sodium-benzophenone ketyl, methanol was distilled from magnesium. Where appropriate, reactions were carried out under an argon atmosphere in oven dried glassware ($150{ }^{\circ} \mathrm{C}$ overnight). R eagents were either dried by standard procedures or used as purchased. Flash chromatography was carried out using M erck-K ieselgel 60 ($0.040-0.063 \mathrm{~mm}$) under pressure. Thin layer chromatography
was visualised with UV light (254 nm) and either acidified ammonium molybdate(iv) or 10% conc. sulfuric acid in methanol as appropriate. X-Ray crystal structures were solved by members of Dr Paul R aithby's group in C ambridge.

Preparation of 1,1,2,2-tetramethoxycyclohexane 1

Conc. sulfuric acid (1 ml) was added to a stirred solution of cyclohexane-1,2-dione ($44.8 \mathrm{~g}, 0.4 \mathrm{mmol}$) in methanol (100 ml) and trimethyl orthoformate (160 ml). The resulting black solution was heated under reflux for 5 h and then neutralised with sodium hydrogen carbonate (ca. 4 g). The solvent was removed under reduced pressure and the residue distilled to furnish 1 ($59.5 \mathrm{~g}, 65 \%$) as a colourless liquid, bp $76^{\circ} \mathrm{C}, 0.8 \mathrm{mmHg}$ (Found: C, 58.9; H, 9.9. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, 58.8; $\mathrm{H}, 9.9 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2942,1462,1346,1162,1089,1060,967,872$; $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right)$ 1.31-1.48 and 1.60-1.75 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}$, $3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6-\mathrm{H}), 3.32(12 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}) ; \delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 21.67 ($4-\mathrm{C}, 5-\mathrm{C}$), 30.61 (3-C, 6-C), 49.25 (OM e), 102.07 ($1-\mathrm{C}$, 2-C); m/z (EI) 204 (${ }^{+}, 2 \%$), 189 ($100, M^{+}-\mathrm{Me}^{2}$, 173 (20, $\mathrm{M}^{+}-\mathrm{OM}$ e), 97 (30), 75 (15) (Found: $\mathrm{M}^{+}, 204.1362$. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{4}$ requires M , 204.1361).

General procedure for C DA protection

CSA (0.15 equiv.) was added to a solution of monosaccharide precursor (1 equiv.), 1,1,2,2-tetramethoxycyclohexane 1 (1.6 equiv.) and dry trimethyl orthoformate (ca. $0.1 \mathrm{ml} \mathrm{mmol}^{-1}$ of monosaccharide) in dry methanol (ca. $1.4 \mathrm{ml} \mathrm{mmol}^{-1}$ of monosaccharide). The reaction was heated under reflux for 16 h after which the mixture was neutralised with sodium hydrogen carbonate The solvent was removed under reduced pressure and the residue purified by column chromatography. M inor products $<5 \%$ were, in general, not characterised.
(1'R)-M ethyl 2,3-0-(2', 2^{\prime}-dimethoxycyclohexylidene)- α - Dmannopyranoside 6 and ($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-methyl 3,4-0-($1^{\prime}, 2^{\prime}$-dimeth-oxycyclohexane-1', $\mathbf{2}^{\prime}$-diyl)- α-d-mannopyranoside 5 . M ethyl α-dmannopyranoside $4(3.46 \mathrm{~g}, 17.8 \mathrm{mmol})$ was subjected to the general procedure for CDA protection. Chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$ to $\mathrm{Et}_{2} \mathrm{O}+4 \% \mathrm{EtOH}$) furnished $6(666 \mathrm{mg}$, 11%) as an off-white foam and slightly impure 5 which was further purified by slow crystallisation from ether to give $\mathbf{5}$ (2.83 $\mathrm{g}, 48 \%$) as colourless cubes.

Compound 6: $[a]_{D}^{25}+19.8$ (c 0.89 in CHCl_{3}) (Found: $\mathrm{C}, 53.8$; $\mathrm{H}, 7.9 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8}$ requires $\left.\mathrm{C}, 53.9 ; \mathrm{H}, 7.8 \%\right) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $1.37-1.87\left(8 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.17(1 \mathrm{H}$, br t, J $6.2,6-\mathrm{OH}$), $2.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0,4-\mathrm{OH}), 3.27$ and 3.32 ($2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{r}^{\prime}-\mathrm{OM} \mathrm{e}$), $3.40(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM} \mathrm{e}$), $3.64(1 \mathrm{H}$, ddd, J $8.4,2 \times 4.2,5-\mathrm{H}$), 3.72 (1 H , ddd, J 8.3, 6.5, 5.3, 4-H), $3.80-3.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 4.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 6.4,3-\mathrm{H})$, $4.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,2-\mathrm{H})$, $4.88(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}$; CDCl_{3}) 21.59 and $22.89\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 30.71$ and 35.68 ($3^{\prime}-\mathrm{C}, 6^{\prime}-$ C), 49.13 and 49.98 ($2 \times 2^{\prime}-\mathrm{OM} \mathrm{e}$), 55.23 ($1-\mathrm{OM} \mathrm{e}$), $62.89(6-\mathrm{C})$, 69.56 ($4-\mathrm{C}$), 70.17 ($5-\mathrm{C}$), 76.71 (2-C), 78.37 (3-C), 98.92 (1-C), 101.40 (2'-C), 111.25 (1'-C); m/z (EI) 334 (M ${ }^{+},<10 \%$), 319 (90 , $\left.M^{+}-\mathrm{Me}\right), 303\left(40, \mathrm{M}^{+}-\mathrm{OM}\right.$ e), 175 (60), 161 (50), 143 (100), 111 (80) (Found: M^{+}, 334.1632. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8}$ requires M , 334.1628).

Compound 5: mp $168^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $[a]_{\mathrm{D}}^{25}+191$ (c 0.94 in CHCl_{3}) (Found: $\mathrm{C}, 54.0$; $\mathrm{H}, 8.0 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8}$ requires C, $53.8 ; \mathrm{H}$, $7.8 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)[1.29-1.43,1.45-1.55$ and $1.62-$ $1.82\left(2 \mathrm{H}, 2 \mathrm{H}\right.$ and $\left.4 \mathrm{H}, 3 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$], $2.25(1$ $\mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 5.8,6-\mathrm{OH}), 2.89(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{OH}), 3.20$ and $3.21(2 \times 3$ $\mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 3.35 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM} \mathrm{e}$), 3.72-3.86 (3 $\left.\mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.92(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 10.6, 2.9, 3-H), $4.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.0,4-\mathrm{H}), 4.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $0.9,1-\mathrm{H}$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 21.35\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 27.00\left(3^{\prime}-\mathrm{C}\right.$, $6^{\prime}-\mathrm{C}$), 46.79 and 46.93 ($1^{\prime}-\mathrm{OMe} 2^{\prime}-\mathrm{OM} \mathrm{e}$), 54.88 ($1-\mathrm{OMe}$), 61.41 ($6-C$), 63.88 ($4-\mathrm{C}$), 68.83 (3-C), 70.05 ($2-\mathrm{C}$), 70.72 ($5-\mathrm{C}$), 98.77 and 99.22 ($\left.1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}\right), 101.21(1-\mathrm{C}) ; \mathrm{m} / \mathrm{z}$ (EI) 334 (M^{+}, 20%), 319 ($80, \mathrm{M}^{+}-\mathrm{M} \mathrm{e}$), 303 ($40, \mathrm{M}^{+}-\mathrm{OM} \mathrm{e}$), 287 (40), 271 (50), 244 (60), 175 (30), $159(20), 143(90), 127$ (60), 111 (80),

101 (100) (Found: M^{+}, 334.1620. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8}$ requires M , 334.1628).

X-R ay structure determination of compound $5 .-\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8}, \mathrm{M}$ 334.4, orthorhombic, space group $\mathrm{P} 2_{1} 2_{2} 2_{1}, a=10.312(3)$, $b=16.910(5), c=9.533(3) \AA, U=1662.4(8) \AA^{3}, F(000)=720$, $D_{c}=1.336 \mathrm{Mg} \mathrm{m}^{-3}, Z=4, \mu(\mathrm{M} \mathrm{o}-\mathrm{K} \alpha)=0.108 \mathrm{~mm}^{-1}$, final wR $\left(F^{2}\right)=0.0792$ on 2144 independent reflections, $R(F)=0.0309$ for 1952 independent reflections $[1>2 \sigma(1)]$.
(1'R)-M ethyl \quad 4,6-di-0-acetyl-2,3-0-(2',2'-dimethoxycyclohexylidene) $-\alpha-D$-mannopyranoside 7 . The dioxolane 6 (151 mg , 0.451 mmol) was stirred for 16 h in pyridine (1.5 ml) and acetic anhydride (0.5 ml). Removal of the solvent under reduced pressure and column chromatography furnished the title compound 7 ($175 \mathrm{mg}, 93 \%$) as an off-white foam, $[a]_{\mathrm{D}}^{18}+4.5$ (c 0.74 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)[1.37-1.53(2 \mathrm{H}, \mathrm{m}), 1.58(2 \mathrm{H}, \mathrm{t}$, J 7.0), $1.75(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0)$ and $1.81-1.93(2 \mathrm{H}, \mathrm{m}),\left(3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$, $\left.5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$], $2.08\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{M} \mathrm{eCO}_{2}\right), 3.26$ and $3.33(2 \times 3 \mathrm{H}$, $2 \times \mathrm{s}, 2 \times 2^{\prime}-\mathrm{OM} \mathrm{e}$), $3.39(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}$ e), 3.80 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.2$, 5.9, 2.6, 5-H), 4.08 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,2.6,6-\mathrm{H}_{\mathrm{A}}$), $4.24(1 \mathrm{H}, \mathrm{dd}$, J 12.1, 5.8, 6-H ${ }_{\mathrm{B}}$), $4.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.4,6.3,3-\mathrm{H}$), $4.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 5.9, 2-H), 4.96 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.02 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3,7.5,4-\mathrm{H}$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 20.71$ and $20.92\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 21.54$ and $22.66\left[2 \times \mathrm{MeCO}_{2}\right], 30.72$ and $35.36\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 48.93$ and 50.04 (2×2 '-OM e), 54.95 (1-OM e), 62.62 ($6-\mathrm{C}$), [$65.97,69.61$, 75.75 and 77.09 (2-C, 3-C, 4-C, 5-C)], 98.49 (1-C), 101.25 ($2^{\prime}-C$), 111.32 ($\left.1^{\prime}-\mathrm{C}\right), 169.64$ and $170.63(2 \times C O)$; m/z (EI) $418\left(\mathrm{M}^{+}\right.$, 5%), 403 ($80, \mathrm{M}^{+}-\mathrm{Me}$), 387 ($40, \mathrm{M}^{+}-\mathrm{OM} \mathrm{e}$), 130 (40), 101 (100) (Found: $\mathrm{M}^{+}, 418.1839 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{10}$ requires $\mathrm{M}, 418.1839$).
(1'R)-E thyl 2,3-0-(2', 2^{\prime}-dimethoxycyclohex ylidene)-1-thio- α -D-mannopyranoside 9 and ($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-ethyl 3,4-0-($1^{\prime}, 2^{\prime}$-dimethox ycyclohexane-1', 2^{\prime}-diyl)-1-thio- α-d-mannopyranoside 8. Ethyl 1-thio- α-d-mannopyranoside ($1.22 \mathrm{~g}, 5.44 \mathrm{mmol}$) was subjected to the general procedure for CDA protection. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol $3: 1$ to $\mathrm{Et}_{2} \mathrm{O}+3 \% \mathrm{EtOH}$) furnished 9 ($162 \mathrm{mg}, 8 \%$) as an off-white foam and slightly impure 8 which was further purified by slow crystallisation (from $\mathrm{Et}_{2} \mathrm{O}$) and further column chromatography to give clean $8(1.04 \mathrm{~g}, 53 \%)$ as a white solid.

Compound 9: $[a]_{0}^{18}+119$ (c 0.63 in CHCl_{3}) (Found: $\mathrm{C}, 52.6$; $\mathrm{H}, 7.8 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~S}$ requires $\left.\mathrm{C}, 52.7 ; \mathrm{H}, 7.7 \%\right) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right),[1.40-1.50,1.57-1.60$ and 1.68-1.82 ($2 \mathrm{H}, 2 \mathrm{H}$ and $4 \mathrm{H}, 3 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-$ H)], $2.51\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.1,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.62(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.1$, $\mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 2.40-2.70(1 H, br, OH), $3.24\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right), 3.29$ ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OM}$ e), $3.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.4,9.7,4-\mathrm{H}$), $3.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.3.8,6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.92(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 9.8,3.8,5-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.0, 3-H), 4.48 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0,2-\mathrm{H}$), $5.56(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$; $\delta_{\mathrm{c}}(100$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.12\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.55$ and $22.87\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right)$, $24.23\left(\mathrm{SCH}_{2}\right), 30.70$ and $35.95\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 49.09$ and 49.98 $\left(2 \times 2^{\prime}-\mathrm{OM} \mathrm{e}\right), 62.44(6-\mathrm{C}),[69.49,70.64,77.84$ and $78.55(2-\mathrm{C}$, 3-C, 4-C, 5-C)], 83.10 ($1-\mathrm{C}$), 101.34 (2'-C), 111.16 ($1^{\prime}-\mathrm{C}$); m/z (EI) $364\left(\mathrm{M}^{+}, 30 \%\right), 349\left(20, \mathrm{M}^{+}-\mathrm{M} \mathrm{e}\right), 332$ (60), 287 (40), 189 (50), 175 (50), 127 (30), 111 (20), 101 (100) (Found: M^{+}, 364.1549. $C_{16} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{M}, 364.1555$).

Compound 8: $\mathrm{mp} 185^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $[a]_{0}^{18}+281$ (c 0.72 in CHCl_{3}) (Found: $\mathrm{C}, 52.7 ; \mathrm{H}, 7.8 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 52.7 ; \mathrm{H}$, 7.7\%); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, 1.32-1.56 and 1.64-1.89 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-$ H), $2.10(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J} 6.5,6-\mathrm{OH}), 2.57(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.9,7.4$, $\mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.65\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.9,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.94(1 \mathrm{H}, \mathrm{s}, 2-$ $\mathrm{OH}), 3.20$ and $3.22\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right), 3.80(2$ $\left.\mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 4.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}), 4.11-4.18(2 \mathrm{H}, \mathrm{m}, 3-$ H, $5-\mathrm{H}), 4.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.2,4-\mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$; $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.85\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.34\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right)$, $25.16\left(\mathrm{SCH}_{2}\right), 26.97$ and $27.00\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 46.83$ and 46.91 ($1^{\prime}-$ OM e, 2'-OM e), 61.40 ($6-\mathrm{C}$), [64.21, 69.48, 70.95 and 71.61 (2-C, 3-C, 4-C, 5-C)], 84.54 (1-C), 98.79 and 99.29 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$); m/z (EI) 364 (M $\left.{ }^{+}, 10 \%\right), 349(90), 333$ (30), 175 (50), 161 (60), 143 (60), 111 (50), 81 (70), 67 (80), 55 (100) (Found: $\mathrm{M}^{+}, 364.1555$. $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{M}, 364.1555$).
($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2}^{\prime} \mathrm{S}$)-P henyl \quad 3,4-0-($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-dimethoxycyclohex ane-1 $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$ -diyl)-1-seleno- α - D -mannopyranoside 10. Phenyl 1 -seleno- α-Dmannopyranoside ($563 \mathrm{mg}, 1.83 \mathrm{mmol}$) was subjected to the standard conditions for CDA protection. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol $2: 1$ to $\mathrm{Et}_{2} \mathrm{O}$) furnished impure product which was recrystallised ($\mathrm{Et}_{2} \mathrm{O}$) to give clean 10 ($371 \mathrm{mg}, 44 \%$). Other isomers were not characterised.
Compound 10: $[a]_{D}^{25}+325$ (c 1.16 in CHCl_{3}) (Found: $\mathrm{C}, 52.2$; $\mathrm{H}, 6.1 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Se}$ requires $\left.\mathrm{C}, 52.3 ; \mathrm{H}, 6.1 \%\right) ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.32-1.49 and 1.69-1.85 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}$, $\left.5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}_{2}\right), 1.98(1 \mathrm{H}, \mathrm{brt}, \mathrm{J} 6.5,6-\mathrm{OH}), 2.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0,2-$ $\mathrm{OH}), 3.20$ and $3.27\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OMe} \mathrm{2}^{\prime}-\mathrm{OM}\right.$ e), $3.74-$ $3.80\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 4.16-4.21(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 5-\mathrm{H}), 4.28(1$ H, br s, 2-H), $4.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.2,4-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$, 7.27-7.33 and 7.54-7.59 (3 H and $2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}(100$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $21.30\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.92$ and 26.96 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.83 and 46.96 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 61.06 ($6-\mathrm{C}$), 63.80 ($4-\mathrm{C}$), 69.69 (3-C), 71.98 (2-C), 73.30 (5-C), 85.60 (1-C), 98.78 and 99.33 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), 127.98 (para-C), 128.90 (ipso-C), 129.22 and 134.26 (ortho- and meta-C); m/z (EI) 460 (${ }^{+}, 25 \%$), 429 (40 , M^{+}- OM e), 271 (60), 127 (100), 99 (40) (Found: $\mathrm{M}^{+}, 460.1000$. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Se}$ requires $\mathrm{M}, 460.1000$).
(1'S)-M ethyl 2,3-0-(2',2'-dimethoxycyclohexylidene)- α-Lrhamnopyranoside 13 and ($1^{\prime} R, 2^{\prime} R$)-methyl $3,4-0$-($1^{\prime}, 2^{\prime}$-dimeth-oxycyclohexane-1', 2^{\prime}-diyl)- α-L-rhamnopyranoside 12. M ethyl α -L-rhamnopyranoside ($331 \mathrm{mg}, 1.86 \mathrm{mmol}$) was subjected to thestandard conditionsfor CDA protection. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol 1:1 to $3: 1$) furnished $\mathbf{1 2}$ ($437 \mathrm{mg}, 74 \%$) as an off-white foam, which was recrystallised from ether, and slightly impure 13 ($62 \mathrm{mg}, 10 \%$).

Compound 13: (an analytical sample of 13 was purified by extensive chromatography) $[a]_{0}^{18} 14.8$ (c 0.65 in CHCl_{3}) (Found: C, 56.7; H, 8.4. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}$ requires $\mathrm{C}, 56.6 ; \mathrm{H}, 8.2 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.28(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,6-\mathrm{H}), 1.33-1.60$ and 1.64-1.87 ($\left.2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.59(1 \mathrm{H}, \mathrm{d}$, J 4.8, 4-OH), 3.25 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 3.30 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OM}$ e), 3.36 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}$ e), 3.35-3.40 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), 3.63 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 8.5$, $6.4,5-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 6.6,3-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,2-$ H), $4.80(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 17.89(6-\mathrm{C}), 21.62$ and $22.87\left(4^{\prime}-C, 5^{\prime}-C\right), 30.70$ and $35.76\left(3^{\prime}-C, 6^{\prime}-C\right), 49.05\left(2^{\prime}-\right.$ OM e), 49.99 ($2^{\prime}-\mathrm{OM} \mathrm{e}$), 54.96 ($1-\mathrm{OM} \mathrm{e}$), [$66.12,74.31,76.72$ and 78.56 (2-C, 3-C, 4-C, 5-C)], 98.70 (1-C), 101.38 (2'-C), 111.09 ($1^{\prime}-\mathrm{C}$); m/z (EI) 318 (M ${ }^{+},<10 \%$), 303 ($30, \mathrm{M}^{+}-\mathrm{M} \mathrm{e)}$,101 (70), 84 (100) (Found: M^{+}, 318.1674. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}$ requires M , 318.1678).

Compound 12: $\mathrm{mp} 135^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $[a]_{0}^{18}-190$ (c 0.93 in CHCl_{3}) (Found: $\mathrm{C}, 56.7 ; \mathrm{H}, 8.1 \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}$ requires $\mathrm{C}, 56.6 ; \mathrm{H}$, 8.2%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 1.27 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9,6-\mathrm{H}$), 1.32-1.57 and 1.62-1.83 ($\left.2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.43$ (1 $\mathrm{H}, \mathrm{s}, 2-\mathrm{OH}), 3.19$ and $3.21\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right)$, 3.35 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}$ e), $3.81(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 9.8,5.9,5-\mathrm{H}$), $3.92(1 \mathrm{H}$, dd, 」 $2 \times 9.9,4-\mathrm{H}), 3.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0$, 3.1, 3-H), $4.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0,1-\mathrm{H}\right.$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 16.53$ $(6-C), 21.38\left(4^{\prime}-C, 5^{\prime}-C\right), 26.98$ and 27.08 ($3^{\prime}-C, 6^{\prime}-C$), 46.55 and 46.91 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM}$ e), 54.73 (1-OM e), 66.65 ($5-\mathrm{C}$), 68.94 and 69.07 ($3-\mathrm{C}, 4-\mathrm{C}$), $70.30(2-\mathrm{C}), 98.74$ and 99.09 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), 100.94 (1-C); m/z (EI) 318 (M ${ }^{+},<10 \%$), 303 ($80, \mathrm{M}^{+}-\mathrm{M} \mathrm{e}$), 287 ($40, \mathrm{M}^{+}$- OM e), 175 (60), 143 (90), 111 (60), 84 (100), 55 (70) (Found: M^{+}, 318.1689. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}$ requires M , 318.1678).
(1'S)-E thyl 2,3-0-(2', $\mathbf{2}^{\prime}$-dimethoxycyclohexylidene)-1-thio- α -L-rhamnopyranoside 15 , (1^{\prime} R , 2^{\prime} R)-ethyl $3,4-0$-($1^{\prime}, 2^{\prime}$-dimethoxy-cyclohexane- $1^{\prime}, 2^{\prime}$-diyl)-1-thio- α-L-rhamnopyranoside 14 and ($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2}^{\prime}$ S)-ethyl 3,4-0-($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-dimethoxycyclohex ane-1', $\mathbf{2}^{\prime}$ '-diyl)-1-thio- α-L-rhamnopyranoside 16. Ethyl 1-thio- α-L-rhamnopyranoside ($2.66 \mathrm{~g}, 12.8 \mathrm{mmol}$) was subjected to standard CDA protection conditions. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol 1:1 to 3:1) furnished crystalline 14 (2.46 g , 55%) and 15 ($200 \mathrm{mg}, 4 \%$). M inor boat dioxolane isomer 16 could also be obtained ($0.20 \mathrm{~g}, 4 \%$) and was submitted for X-ray analysis.

Compound 15: mp $100^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $[a]_{D}^{25}-123$ (c 1.30 in CHCl_{3}) (Found: $\mathrm{C}, 55.0 ; \mathrm{H}, 8.2 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 55.15$; $\mathrm{H}, 8.1 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 1.27 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2,6-\mathrm{H}$), 1.29 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.36-1.62$ and $1.68-1.90(2 \times 4 \mathrm{H}$, $\left.2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.19(1 \mathrm{H}, \mathrm{br}$ s, $4-\mathrm{OH}), 2.51$ $\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$), $2.64(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.3$, $\mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.26 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Z}^{\prime}-\mathrm{OM} \mathrm{e}$), 3.31 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 3.43 (1 H, ddd, J 9.7, 7.6, 3.7, 4-H), 3.93 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 9.6,6.2,5-\mathrm{H}$), 4.12 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 6.6,3-\mathrm{H}$), $4.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9,2-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{s}$, $1-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.60\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 17.42$ ($6-\mathrm{C}$), 21.60 and $22.88\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 24.33\left(\mathrm{SCH}_{2}\right), 30.72$ and 36.04 ($3^{\prime}-$ C, 6'-C), 49.05 (2'-OM e), 50.10 (2'-OM e), [65.72, 75.78, 78.15 and 78.53 ($2-\mathrm{C}, 3-\mathrm{C}, 4-\mathrm{C}, 5-\mathrm{C}$)], 79.86 ($1-\mathrm{C}$), 101.32 ($2^{\prime}-\mathrm{C}$), 111.14 ($1^{\prime}-\mathrm{C}$); m/z (EI) 348 (${ }^{+}$, 30\%), 316 (30), 287 (80), 168 (100), 113 (30) (Found: $\mathrm{M}^{+}, 348.1599 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires M , 348.1606).

Compound 14: mp $137^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{18}-320$ (c 0.55 in CHCl_{3}) (Found: $\mathrm{C}, 55.4 ; \mathrm{H}, 8.1 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 55.15$; $\mathrm{H}, 8.1 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.26(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0,6-\mathrm{H}$), 1.27 (3 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.32-1.55$ and $1.64-1.80(2 \times 4 \mathrm{H}$, $\left.2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1,2-\mathrm{OH}), 2.58$ ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.66(1 \mathrm{H}, \mathrm{dq}$, J 13.0, 7.3, $\mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.19 and $3.21\left(2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right)$, $3.91(1 \mathrm{H}$, dd, J $2 \times 10.0,4-\mathrm{H}$), $4.02(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}), 4.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3$, 3.0, 3-H), 4.18 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 9.9,6.1,5-\mathrm{H}$), 5.24 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.99\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 16.45(6-\mathrm{C}), 21.37\left(4^{\prime}-\right.$ $\left.\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 25.37\left(\mathrm{SCH}_{2}\right), 26.94$ and $27.07\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 46.57$ and 46.87 (1'-OM e, 2'-OM e), [67.09, 69.45, 69.52 and 71.89 (2-C, 3C, 4-C, 5-C)], 84.24 (1-C), 98.74 and 99.15 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$); m / z (EI) 348 ($\mathrm{M}^{+}, 20 \%$), 333 ($70, \mathrm{M}^{+}-\mathrm{M} \mathrm{e}$), 317 ($50, \mathrm{M}^{+}$- OM e), 255 (80), 175 (40), 143 (100), 127 (80), 111 (60), 84 (100) (Found: $\mathrm{M}^{+}, 348.1615 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{M}, 348.1606$).

Compound 16: mp $162^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $[a]_{\mathrm{D}}^{18}-157$ (c 0.65 in CHCl_{3}) (Found: $\mathrm{C}, 55.3$; $\mathrm{H}, 8.2 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6}$ S requires $\mathrm{C}, 55.2 ; \mathrm{H}$, 8.1%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.29$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}) 6.2,6-\mathrm{H}),[1.46-1.54(4 \mathrm{H}, \mathrm{m}), 1.60(1 \mathrm{H}, \mathrm{ddd}$, J $2 \times 13.5,4.0$), 1.65 (1 H, ddd, J $2 \times 13.5,3.9$), 1.88 ($1 \mathrm{H}, \mathrm{br}$ d, J 13.0) and $1.95(1 \mathrm{H}$, br d, J 13.0$)\left(3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$], 2.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.6,2-\mathrm{OH}$), $2.56\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$), 2.65 $\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.3, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.26$ and $3.34(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}$, 1'-OM e, 2'-OM e), 3.98 ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 9.5,6.2,5-\mathrm{H}$), 4.07 ($1 \mathrm{H}, \mathrm{dd}$, J 3.0, 2.5, 2-H), 4.22 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.9,9.6,4-\mathrm{H}$), 4.50 (1 H , dd, J $11.0,3.1,3-\mathrm{H}), 5.23(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.88$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 16.75(6-\mathrm{C}), 21.64$ and $21.72\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 25.31$ $\left(\mathrm{SCH}_{2}\right), 28.51$ and $28.57\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 46.87$ and 47.23 ($1^{\prime}-\mathrm{OM} \mathrm{e}$, 2'-OM e), [68.02, 71.66, 72.22 and 72.30 (2-C, 3-C, 4-C, 5-C)], 84.09 ($1-\mathrm{C}$), 100.21 and 100.67 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$); m/z (EI) $348\left(\mathrm{M}^{+}\right.$, $<10 \%$), 333 (80, M $^{+}-\mathrm{M} \mathrm{e)} 316$ (50), 269 (60), 254 (60), 143 (60), 127 (100), 111 (50), 84 (60) (Found: $\mathrm{M}^{+}, 348.1595$. $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{M}, 348.1606$).

X-R ay structure determination of compound $16 .-\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}$, M 348.4, monoclinic, space group $\mathrm{P} 2_{1}, \quad a=9.406(2)$, $b=9.816(2), c=9.690(2) \AA, U=894.3(3) \AA^{3}, F(000)=376$, $D_{c}=1.294 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Z}=2, \mu(\mathrm{M} \mathrm{o}-\mathrm{K} \alpha)=0.208 \mathrm{~mm}^{-1}$, final wR $\left(F^{2}\right)=0.1668$ on 2932 independent reflections, $R(F)=0.0593$ for 1917 independent reflections $[1>2 \sigma(1)]$.
($\mathbf{1}^{\prime} \mathrm{S}$)-M ethyl 2,3-0-(2',2'-dimethoxycyclohexylidene)- β-Llyxopyranoside 18 and ($1^{\prime} R, 2^{\prime} R$)-methyl 3,4-0-($1^{\prime}, 2^{\prime}$-dimethoxy-cyclohexane- $1^{\prime}, 2^{\prime}$-diyl) $-\beta$-L-lyxopyranoside 17. M ethyl α-D-lyxopyranoside ($300 \mathrm{mg}, 1.83 \mathrm{mmol}$) was subjected to the standard CDA protection conditions. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol 1:1 to 3:1) furnished 17 ($248 \mathrm{mg}, 45 \%$) as an off-white foam and $\mathbf{1 8}$ ($62 \mathrm{mg}, \mathbf{1 1 \%}$).

Compound 18: $[\alpha]_{0}^{18}+29.5$ (c 0.78 in CHCl_{3}) (Found: C , 55.4; H , 7.9. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{7}$ requires C, 55.3; $\mathrm{H}, 8.0 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{H} \mathrm{z}$; $\left.\mathrm{CDCl}_{3}\right) 1.38-1.60$ and $1.66-1.81\left(2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$, $5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$), 3.26 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OM}$ e), 3.27 ($3 \mathrm{H}, \mathrm{s}, 2^{\prime}$-OM e), 3.39 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.9, \mathrm{OH}$), $3.43(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM} \mathrm{e}), 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4$, $\left.4.3,5-\mathrm{H}_{\mathrm{A}}\right), 3.77(1 \mathrm{H}, \mathrm{dddd}, \mathrm{J} 8.4,3 \times 4.2,4-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{dd}$, J $11.4,3.8,5-\mathrm{H}_{\mathrm{B}}$), $4.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3,1.8,2-\mathrm{H}), 4.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$
$6.8,4.1,3-\mathrm{H}), 4.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.8,1-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 21.60 and $22.89\left(4^{\prime}-C, 5^{\prime}-C\right), 30.78$ and 35.20 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 49.27 (2'-OM e), 55.70 (1-OM e), 63.15 (5-C), [67.10, 75.41 and 76.56 (2-C, 3-C, 4-C)], 99.44 (1-C), 101.65 ($2^{\prime}-\mathrm{C}$), 111.14 ($1^{\prime}-\mathrm{C}$); m/z (EI) 304 ($\mathrm{M}^{+},<10 \%$), 289 ($70, \mathrm{M}^{+}-\mathrm{M} \mathrm{e)}$,214 (50), 143 (60), 129 (80), 111 (60), 101 (100) (Found: $\mathrm{M}^{+}, 304.1528 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{7}$ requires $M, 304.1522$)

Compound 17: $[a]_{0}^{18}+142$ (c 0.74 in CHCl_{3}) (Found: $\mathrm{C}, 53.9$; $\mathrm{H}, 7.8 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{7} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 53.7 ; \mathrm{H}, 8.0 \%\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.30-1.58$ and $1.62-1.84\left(2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$, $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.94(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{OH}), 3.19$ and $3.20(2 \times 3 \mathrm{H}$ $2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 3.33 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM} \mathrm{e}$), $3.62(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.1, 5-H), $3.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,2.9,3-\mathrm{H}$), 4.32 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 10.4,8.1,4-\mathrm{H}$), $4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0,1-\mathrm{H}) ; \delta_{\mathrm{c}}(100$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.35\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.99\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 46.80$ and 46.89 (1'-OM e, 2'-OM e), 54.88 (1-OM e), 60.85 ($5-\mathrm{C}$), 63.67 (4 C), 69.44 (3-C), 70.01 ($2-\mathrm{C}$), 98.71 and 99.37 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), 101.35 (1-C); m/z (EI) 304 ($\mathrm{M}^{+}, 10 \%$), 289 ($80, \mathrm{M}^{+}-\mathrm{Me}$), 273 (40, M ${ }^{+}$- OM e), 257 (40), 175 (30), 143 (100), 111 (60), 70 (70) (Found: M^{+}, 304.1522. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{7}$ requires M , 304.1522).
(1^{\prime} R, $\mathbf{2}^{\prime}$ ')-M ethyl $\quad \mathbf{2 , 3 - 0}$-($1^{\prime}, 2^{\prime}$-dimethoxycyclohexane- $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$ -diyl)-D-galactopyranoside 20 (alpha and beta isomers). M ethyl α-d-galactopyranoside ($\mathrm{H}_{2} \mathrm{O}$-adduct, $1.20 \mathrm{~g}, 6.16 \mathrm{mmol}$) was subjected to the standard CDA protection conditions. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$ to $\mathrm{Et}_{2} \mathrm{O}+4 \% \mathrm{EtOH}$) furnished a $4: 1 \alpha: \beta$-mixture of 20 ($850 \mathrm{mg}, \mathbf{4 6 \%}$). Other isomers were visible by TLC but were not isolated.

In another experiment under standard conditions starting from 6-OTBDPS protected methyl α-galactopyranoside (531 $\mathrm{mg}, 1.2 \mathrm{mmol}$), the desilylated derivative 20 could be isolated in a comparable yield ($182 \mathrm{mg}, 44 \%$) but without contamination with the β-anomer.

Compound 20: $\left(\alpha\right.$-anomer) $[\alpha]_{b}^{25}+10.9$ (c 0.66 in CHCl_{3}); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 1.29-1.57 and 1.71-1.89 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.57$ and $2.93(2 \times 1 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}$, $2 \times \mathrm{OH}), 3.19$ and $3.20\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right), 3.41$ (s, 1-OM e), 3.78-3.86(2 H , m, 5-H , 6-H ${ }_{\text {A }}$) 3.93 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7$, $\left.5.0,6-\mathrm{H}_{\mathrm{B}}\right), 4.05(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 1.9,4-\mathrm{H}), 4.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8,3.0$, $3-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.8,3.4,2-\mathrm{H}$), 4.83 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.3,1-\mathrm{H}$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 21.34\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 27.00$ and $27.03\left(3^{\prime}-\mathrm{C}\right.$, $6^{\prime}-\mathrm{C}$), 46.81 and 46.84 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 55.28 ($1-\mathrm{OMe}$), 62.91 ($6-\mathrm{C}$), 65.81 (2-C), 66.89 (3-C), 69.60 ($4-\mathrm{C}$), 70.37 ($5-\mathrm{C}$), 98.62 (1-C), 99.03 and 99.07 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$); m/z (EI) 334 (${ }^{+}$, $<10 \%$), 319 ($40, \mathrm{M}^{+}-\mathrm{OM} \mathrm{e}$), 143 (70), 111 (60), 100 (100) (Found: M^{+}, 334.1625. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8}$ requires M , 334.1628).
($1^{\prime} \mathrm{R}, \mathbf{2}^{\prime} \mathrm{R}$)-M ethyl $\quad \mathbf{6 - 0}$-tert-butyIdiphenyIsilyl-2,3-0-($\mathbf{1}^{\prime}, 2^{\prime}$ -dimethoxycyclohexane-1', 2^{\prime}-diyl)- α-D-galactopyranoside 22 and (1'S)-60-0 tert-butyldiphenylsilyl-3,4-0-(2', 2'-dimethoxy-cyclohexylidene)- $\boldsymbol{\alpha}$-d-galactopyranoside 21. CSA ($36 \mathrm{mg}, 0.16$ mmol) was added to a stirred solution of methyl $6-0$-tert-butyldiphenylsilyl- α-d-galactopyranoside ($489 \mathrm{mg}, 1.13 \mathrm{mmol}$) and $\mathbf{1}(395 \mathrm{mg}, 1.93 \mathrm{mmol}$) in chloroform (5 ml), and the mixture was stirred for 4 h at room temperature. The mixture was neutralised with NaHCO_{3} (ca. 0.1 g), the solvent was removed under reduced pressure, and the crude material was purified by column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol $1: 2$ to $4: 1)$ to furnish slightly impure dioxane 22 ($54 \mathrm{mg}, 8 \%$) and dioxolane 21 ($265 \mathrm{mg}, 41 \%$).

Compound 22 (Found: $\mathrm{C}, 65.0 ; \mathrm{H}, 7.9 . \mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Si}$ requires $\mathrm{C}, 65.0 ; \mathrm{H}, 7.7 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, [1.34-1.90 ($5 \mathrm{H}, \mathrm{m}$), $1.84(1 \mathrm{H}$, br d, J 14.0), $2.02(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}$ 13.5) and 2.28 (1 H , ddd, J $2 \times 13.5,3.3$) ($3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-$ H)], $2.44(1 \mathrm{H}, \mathrm{br}$ s, OH$),[3.24,3.38$ and $3.40(3 \times 3 \mathrm{H}, 3 \times \mathrm{s}$, $1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}, \mathrm{1-OM} \mathrm{e)]} 3.77-,3.83\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.94$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.5,5-\mathrm{H}$), $4.08(1 \mathrm{H}$, br d, J 1.7, 4-H), $4.14(1 \mathrm{H}, \mathrm{dd}$, J 10.7, 2.9, 3-H), 4.26 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.7,3.4,2-\mathrm{H}$), 4.81 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 3.3, 1-H), 7.32-7.45 and 7.65-7.72 (6 H , and $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.25\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.97$ and $22.08\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right)$, 26.49 and $30.65\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 26.86\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 47.52$ and 48.99 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 55.13 (1-OM e), 62.57 ($6-\mathrm{C}$), [65.35, 68.03,
69.72 and 71.30 (2-C, 3-C, 4-C, 5-C)], 98.49 (1-C), 98.61 and 99.42 ($\left.1^{\prime}-\mathrm{C}, \mathrm{2}^{\prime}-\mathrm{C}\right) ; \mathrm{m} / \mathrm{z}(+\mathrm{FAB}) 1168\left(2 \mathrm{M}+\mathrm{Na}^{+}, 70 \%\right), 596$ ($70, \mathrm{M}+\mathrm{Na} \mathrm{a}^{+}$), 542 ($70, \mathrm{M}^{+}-\mathrm{MeOH}$), 197 (100) (Found: $\mathrm{M}+\mathrm{Na}^{+}$, 595.2697. $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{NaO}_{8} \mathrm{Si}$ requires $\mathrm{M}, 595.2703$).
Compound 21: $[a]_{D}^{25}+53$ (c 1.37 in CHCl_{3}) (Found: C, 65.0; $\mathrm{H}, 7.8 . \mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Si}$ requires $\left.\mathrm{C}, 65.0 ; \mathrm{H}, 7.7 \%\right)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.04\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right],[1.38-1.54,1.61-1.69$ and $1.74-1.82$ $\left(4 \mathrm{H}, 2 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$], $2.21(1 \mathrm{H}, \mathrm{d}$, J $7.0, \mathrm{OH}$), 3.23 and $3.28\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right.$), $3.40\left(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}\right.$ e), $3.86\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0,6.7,6-\mathrm{H}_{\mathrm{A}}\right), 3.96(1 \mathrm{H}$, dd, J $10.0,6.6,6-\mathrm{H}_{\mathrm{B}}$), $4.05(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2 \times 6.6,2.3,5-\mathrm{H}$), 4.15 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 6.0,3-\mathrm{H}$), 4.15-4.21(1 H , m, 2-H), $4.24(1 \mathrm{H}, \mathrm{dd}$, J 5.9, 2.3, 4-H), 4.74 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.7,1-\mathrm{H}$), $7.33-7.45$ and $7.65-$ 7.72 (6 H and $4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 19.16$ [$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.65$ and $22.25\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.73\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.97$ and 32.62 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 49.35 and 49.95 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 55.38 (1-OM e), 63.09 ($6-\mathrm{C}$), [67.95, 69.31, 72.46 and 76.36 (2-C, $3-\mathrm{C}, 4-\mathrm{C}, 5-\mathrm{C}$)], 98.98 (1-C), 99.10 ($2^{\prime}-\mathrm{C}$), 111.57 ($1^{\prime}-\mathrm{C}$); m/z (+FA B) 637 (70\%), 596 (M + Na+, 70), 542 ($70, \mathrm{M}^{+}-\mathrm{MeOH}$), 197 (100) (Found: $\mathrm{M}+\mathrm{Na}^{+}$, 595.2702. $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{NaO}_{8} \mathrm{Si}$ requires M, 595.2703).
(1^{\prime} R,2'R)-M ethyl 2,3-0-($\mathbf{1}^{\prime}, 2^{\prime}$-dimethoxycyclohexane-1', $\mathbf{2}^{\prime}$ -diyl)- α-L-arabinopyranoside 24. M ethyl β-d-arabinopyranoside ($319 \mathrm{mg}, 1.94 \mathrm{mmol}$) was subjected to the standard CDA protection conditions. Chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}-$ petrol $2: 1+1 \% \mathrm{EtOH}$ to $\mathrm{Et}_{2} \mathrm{O}$-petrol $5: 1+4 \% \mathrm{EtOH}$) furnished 24 ($216 \mathrm{mg}, 37 \%$). Other isomers were visible by TLC but were not isolated.
Compound 24: $[a]_{0}^{18}-25.6$ (c 0.60 in CHCl_{3}); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.29-1.56 and 1.67-1.92 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}$, $\left.5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.64(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.18$ and $3.20(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}$, 1'-OM e, 2'-OM e), 3.40 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}$ e), 3.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.6$, $\left.1.7,5-\mathrm{H}_{\mathrm{A}}\right), 3.81\left(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 12.6,5-\mathrm{H}_{\mathrm{B}}\right), 3.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$, 4.24 (1 H, dd, J $10.7,3.1,3-\mathrm{H}$), 4.36 (1 H , dd, J 10.7, 3.3, 2-H), $4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.2,1-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.36$ and 21.39 ($4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}$), 27.01 and 27.04 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.78 ($1^{\prime}-0 \mathrm{M} \mathrm{e}, 2^{\prime}-$ OM e), 55.30 (1-OM e), 62.89 ($5-\mathrm{C}$), [65.94, 66.50, 68.48 (2-С, 3C, 4-C)], 98.86 ($1-\mathrm{C}$), 99.04 and 99.07 ($1^{\prime}-\mathrm{C}, \mathrm{L}^{\prime}-\mathrm{C}$); m/z (EI) 304 ($\mathrm{M}^{+},<10 \%$) 289 ($80, \mathrm{M}^{+}-\mathrm{M} \mathrm{e}$), 273 ($20, \mathrm{M}^{+}-\mathrm{OM}$ e), 143 (60), 129 (50), 111 (50), 100 (100), 75 (60) (Found: $\mathrm{M}^{+}, 304.1523$. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{7}$ requires $\mathrm{M}, 304.1522$).
(1^{\prime} R, 2^{\prime} R)-M ethyl $\quad 2,3-0-\left(1^{\prime}, 2^{\prime}\right.$-dimethoxycyclohexane-1', $\mathbf{2}^{\prime}$ -diyl)- α-D-glycopyranoside 26 , ($1^{\prime} S, 2^{\prime}$ S)-methyl $3,4-0-\left(1^{\prime}, 2^{\prime}-\right.$ dimethoxycyclohexane-1', 2^{\prime}-diyl)- α-D-glucopyranoside 25 and ($1^{\prime} \mathrm{R}, 2^{\prime} \mathrm{R}$)-methyl $\quad 3,4-0$-($\mathbf{1}^{\prime}, 2^{\prime}$-dimethoxycyclohex ane-1 $\mathbf{1}^{\prime}, 2^{\prime}$ -diyl)- α-D-glycopyranoside 27. M ethyl α-D-glycopyranoside (752 $\mathrm{mg}, 3.87 \mathrm{mmol}$) was subjected to standard CDA protection conditions. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$ to $\mathrm{Et}_{2} \mathrm{O}+5 \% \mathrm{EtOAc}$) yielded a $3: 2$ mixture of 2,3 - and $3,4-$ protected glucosides of 26 and $25(1.04 \mathrm{~g}, 80 \%)$ and the less polar boat isomer 27 ($26.9 \mathrm{mg}, 2 \%$).

Compound 26 (Found: $\mathrm{C}, 52.4 ; \mathrm{H}, 7.8 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 52.5 ; \mathrm{H}, 7.9 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 1.31-1.57 and 1.65-1.91 ($\left.2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.03(1 \mathrm{H}, \mathrm{t}$, $\mathrm{J} 6.4,6-\mathrm{OH}), 2.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{OH}), 3.20$ and $3.23(2 \times 3 \mathrm{H}$, $2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 3.42 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM} \mathrm{e}$), $3.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}$ 9.5, 3.9, 5-H), 3.78 (1 H , ddd, J $2 \times 9.4,2.6,4-H$), 3.81-3.88 (3 $\mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}$), $4.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,9.3,3-\mathrm{H}$), 4.75 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 3.4,1-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 21.37$ and $21.40\left(4^{\prime}-\mathrm{C}\right.$, $5^{\prime}-\mathrm{C}$), 26.93 and $27.10\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 46.75$ and 46.89 ($1^{\prime}-\mathrm{OM} \mathrm{e}$, $2^{\prime}-\mathrm{OM} \mathrm{e}$), 55.17 (1-OM e), 62.29 ($6-\mathrm{C}$), [68.61, 68.81, 69.76 and 71.96 (2-C, 3-C, 4-C, 5-C)], 98.29 (1-C), 98.47 and 98.82 ($1^{\prime}-\mathrm{C}$, $2^{\prime}-\mathrm{C}$).
Compound 25: $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,2-$ OH), 3.21 and 3.24 ($2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM}$ e), 4.19 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 9.7,3-\mathrm{H}$ or $4-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.9,1-\mathrm{H})$ all other signals overlapped by the major isomer; $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz}^{\left(\mathrm{CDCl}_{3}\right)}\right.$ 21.37 ($4^{\prime}-C, 5^{\prime}-C$, overlapped by signals of the major isomer), 26.93 and 27.09 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$, overlapped by the signals of the major isomer), 46.75 and 46.89 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$, overlapped
by signal of the major isomer), 55.32 ($1-\mathrm{OM} \mathrm{e}$), 61.25 ($6-\mathrm{C}$), [66.71, 69.83, 70.00 and 70.61 (2-C, 3-C, 4-C, 5-C)], 98.56 and 98.67 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), 99.66 (1-C); m/z (EI) 334 ($\mathrm{M}^{+}, 10 \%$), 319 ($10, \mathrm{M}^{+}-\mathrm{Me}$), 303 ($60, \mathrm{M}^{+}-\mathrm{OM} \mathrm{e}$), 271 (40), 198 (100), 159 (40), 142 (90), 127 (60), 111 (65), 100 (100) [Found (+FAB): $\mathrm{M}-\mathrm{OM} \mathrm{e}^{+}, 303.1433 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{7}$ requires $\mathrm{M}-\mathrm{OM} \mathrm{e}^{+}$, 303.1444).

Compound 27: $[a]_{\mathrm{D}}^{29}+109$ (c 0.89 in CHCl_{3}); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.20-1.69 and 1.85-2.00 (6 H and $2 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-$ H, $\left.5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.14$ and $2.68(2 \times 1 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{OH}), 3.26$ and $3.30\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right.$), $3.39(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OMe}$), 3.55 (1 H, br dd, J $2 \times 9.0,4-\mathrm{H}$), 3.60 ($1 \mathrm{H}, \mathrm{dt}$, J 9.6, 3.6, 5-H), 3.78-3.87(2 H, m, 6-H $\left.\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 4.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2,3.4,2-\mathrm{H})$, 4.55 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2,8.6,3-\mathrm{H}$), 4.76 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.4,1-\mathrm{H}$); $\delta_{\mathrm{c}}(100$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 21.55 and $21.65\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right.$), 28.25 and 28.36 ($3^{\prime}-$ C, $6^{\prime}-\mathrm{C}$), 47.13 ($1^{\prime}-\mathrm{OM}$ e and $\mathrm{2}^{\prime}-\mathrm{OM} \mathrm{e}$), 55.32 ($1-\mathrm{OM} \mathrm{e)}$,62.15 (6 C), [70.66, 71.16, 71.57 and 72.12 (2-C, 3-C, 4-C, 5-C)], 98.69 (1-C), 100.02 and 100.27 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$); m/z (EI) 334 (M ${ }^{+}, 10 \%$), 319 ($20, \mathrm{M}$ - Me), 303 ($60, \mathrm{M}-\mathrm{OM} \mathrm{e}$), 287 (25), 159 (20), 143 (50), 127 (50), 111 (40), 100 (100) (Found: $\mathrm{M}^{+}, 334.1623$. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{8}$ requires $\mathrm{M}, 334.1628$).

G eneral procedure for preparation of 6-0-tert-butyldiphenylsilyl derivatives of CDA protected monosaccharides

tert-Butyldiphenylsilyl chloride (1.2 equiv.) was added to a solution of CDA protected monosaccharide (1 equiv.) and imidazole (2.2 equiv.) in THF ($15 \mathrm{ml} \mathrm{mmol}^{-1}$ of monosaccharide) and the mixture stirred at room temperature for 16 h . The precipitate was removed by filtration and washed with $E t_{2} \mathrm{O}$. The combined filtrates were evaporated under reduced pressure and the residue purified by column chromatography to give the desired silylated derivatives
(1^{\prime} R, 2^{\prime} R)-M ethyl 6-0-tert-butyldiphenylsilyl-2,3-0-(1'-2'-di-methoxycyclohexane- $1^{\prime}, 2^{\prime}$-diyl)- $\alpha-D$-glycopyranoside 29 and (1'S,2'S)-methyl 6-0-tert-butyldiphenylsilyl-3,4-0-(1'-2'-di-methoxycyclohexane- $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-diyl)- α-d-glucopyranoside 28. A $3: 2$ mixture of 2,3- and 3,4-CDA -protected α-methyl glucopyranoside $\mathbf{2 6 / 2 5}(438 \mathrm{mg}, 1.31 \mathrm{mmol})$ was subjected to the standard procedure for silylation. Column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol 1:8 to $\mathrm{Et}_{2} \mathrm{O}$) yielded 2,3-protected isomer $29(367 \mathrm{mg}, 49 \%)$ and 3,4 -protected $28(270 \mathrm{mg}, 36 \%)$.

Compound 29: $[a]_{\mathrm{D}}^{20}-11.8$ (c 0.92 in CHCl_{3}) (Found: C , $63.0 ; \mathrm{H}, 7.6 . \mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Si} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 63.0 ; \mathrm{H}, 7.85 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.05\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.32-1.55$ and 1.66-1.92 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$), $2.76(1 \mathrm{H}$, br s, OH), 3.21 and 3.25 ($2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 3.37 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}$ e), $3.72(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.3,2 \times 4.7,5-\mathrm{H}$), $3.82(1 \mathrm{H}$, ddd, J $2 \times 9.3,1.0,4-\mathrm{H}), 3.84-3.91\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right)$, 4.21 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4,9.4,3-\mathrm{H}$), 4.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.4,1-\mathrm{H}$), $7.34-$ 7.46 and $7.66-7.72(6 \mathrm{H}, 4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $19.24\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.41$ and $21.46\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.97$ and 27.15 $\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 26.84\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 46.77$ and 46.86 (1'-OM e, 2^{\prime} OM e), 54.96 (1-OM e), 64.70 ($6-\mathrm{C}$), [68.82, 69.78, 69.95 and 71.70 (2-C, 3-C, 4-C, 5-C)], 98.05 (1-C), 98.42 and 98.79 ($1^{\prime}-\mathrm{C}$, $\left.2^{\prime}-\mathrm{C}\right) ;$ m/z (+FAB) $596\left(\mathrm{M}+\mathrm{Na} \mathrm{a}^{+}, 20 \%\right), 483$ (50), 199 (50), 135 (100) (Found: $\mathrm{M}+\mathrm{Na}$ +, $595.2740 . \mathrm{C}_{31} \mathrm{H}_{44} \mathrm{NaO}_{8}$ Si requires M , 595.2703).

Compound 28: $[a]_{0}^{20}+117\left(\mathrm{c} 0.48\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 64.8$; $\mathrm{H}, 7.5 . \mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Si}$ requires C, 65.0; H, 7.7\%); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.03\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right],[1.32-1.57(4 \mathrm{H}, \mathrm{m}), 1.64-1.80(3$ $\mathrm{H}, \mathrm{m})$ and $1.85(1 \mathrm{H}$, br d, J 13.5$\left.)\left(3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)\right], 2.10$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7, \mathrm{OH}$), 3.14 and $3.25\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\right.$ OM e), 3.39 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}$ e), $3.75-3.94$ ($5 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}$, $6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}$) $4.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.0,3-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.9$, 1-H), [7.32-7.44 and 7.67-7.74 (6 H and $4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H}$)]; $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 19.36\left[\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.39\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.97$ and $27.09\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 26.82\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 46.87$ and 46.99 ($1^{\prime}-$ OM e, $2^{\prime}-\mathrm{OM} \mathrm{e}$), 54.92 ($1-\mathrm{OM} \mathrm{e)}$,62.03 ($6-\mathrm{C}$), [66.42, 70.02, 70.74 and 71.02 ($2-\mathrm{C}, 3-\mathrm{C}, 4-\mathrm{C}, 5-\mathrm{C}$)], 98.44 and 98.61 ($1^{\prime}-\mathrm{C}, 2^{\prime}-$ C), 99.28 (1-C); m/z (+FAB) 1083 (40%), 1050 (60), 1025 (70),

636 (60), 596 ($\mathrm{M}+\mathrm{N} \mathrm{a}^{+}, 50 \%$), 542 ($70, \mathrm{M}-\mathrm{M} \mathrm{eOH}$), 483 (70), 269 (70), 199 (100), 195 (90), 163 (60) (Found: M + N a+, 595.2683. $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{NaO}_{8}$ Si requires $\mathrm{M}, 595.2703$).
($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2}^{\prime} \mathrm{S}$)-M ethyl $\quad \mathbf{6 - 0}$-tert-butyIdiphenylsilyl-3,4-0-($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$ dimethox ycyclohexane-1', $\mathbf{2}^{\prime}$-dilyl)- α-D-mannopyranoside 30. CDA-derivative 5 ($466 \mathrm{mg}, 1.39 \mathrm{mmol}$) was subjected to the general procedure for silylation. Column chromatography ($\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$-petrol $3: 1$) yielded $30\left(802 \mathrm{mg}, 100 \%\right.$), $[a]_{\mathrm{D}}^{25}+95.6$ (c 0.64 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.05\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.30-1.54$ and $1.67-1.80\left(2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right.$, $\left.6^{\prime}-\mathrm{H}\right), 2.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.9, \mathrm{OH}),[3.09,3.22$ and $3.35(3 \times 3 \mathrm{H}$, $3 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}, 1-\mathrm{OM}$ e)], 3.81-3.95 (4 H, m, $2 \mathrm{H}, 5-\mathrm{H}$, $6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}$), $4.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3,2.9,3-\mathrm{H}$), $4.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $2 \times 9.9,4-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0,1-\mathrm{H}), 7.32-7.43$ and $7.80-7.85$ (6 H , and $4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.37$ $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.34\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.80\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.00$ and 27.03 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.82 and 46.92 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 54.52 ($1-$ OM e), 64.47 (6-C), [63.87, 69.22, 70.20 and 71.78 (2-C, 3-C, 4C, 5-C)], 98.62 and 99.16 ($1^{\prime}-C^{\prime} 2^{\prime}-\mathrm{C}$), 100.88 (1-C), [127.48, $127.56,135.66$ and 135.91 (ortho- and meta-C)], [129.46 and 129.50 (para-C)], [133.58 and 134.00 (ipso-C)]; m/z (EI) 557 (M $-\mathrm{M} \mathrm{e}^{+}, 20 \%$), 541 ($80, \mathrm{M}-\mathrm{OM} \mathrm{e}{ }^{+}$), 483 (100), 451 (50), 339 (70), 241 (90), 199 (70), 141 (50), 127 (80) (Found: M - M e+, $557.2568 . \mathrm{C}_{30} \mathrm{H}_{41} \mathrm{O}_{8}$ Si requires $\mathrm{M}, 557.2571$).
($1^{\prime} \mathrm{S}, \mathbf{2}^{\prime} \mathrm{S}$)-E thyl 6 -tert-butyldiphenylsilyl-3,4-0-(1', $\mathbf{2}^{\prime}$-dimeth-oxycyclohexane- $1^{\prime}, 2^{\prime}$-diyl)-1-thio- α-d-mannopyranoside 31. CDA protected SEt mannose 8 ($511 \mathrm{mg}, 1.41 \mathrm{mmol}$) was subjected to the general procedure for silylation. Chromatography ($\mathrm{Et}_{2} \mathrm{O}$-petrol $1: 2$ to $1: 1$) yielded $31\left(823 \mathrm{mg}, 97 \%\right.$), $[a]_{\mathrm{D}}^{18}+156$ (c 1.51 in CHCl_{3}) (Found: $\mathrm{C}, 63.6 ; \mathrm{H}, 7.7 . \mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}$ 7SSi requires C , $63.75 ; \mathrm{H}, 7.7 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.03\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.24\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.30-1.56$ and 1.61-1.80 (2×4 H, $\left.2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.53(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.4$, SCH $\left.{ }_{A} \mathrm{H}_{\mathrm{B}}\right), 2.65\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.3, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, ca. $2.6(1 \mathrm{H}$, OH , obscured by $\mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 3.11 and $3.22\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{I}^{\prime}-\right.$ OM e, 2'-OM e), 3.87 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2,2.0,6-\mathrm{H}_{\mathrm{A}}$) $3.92(1 \mathrm{H}, \mathrm{dd}$, J $11.3,4.8,6-\mathrm{H}_{\mathrm{B}}$), $4.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}), 4.17(1 \mathrm{H}$, dd, J 10.3 , 3.0, 3-H), 4.21 (1 H, ddd, J 9.8, 4.6, 1.9, 5-H), 4.29 (1 H, dd, J $2 \times 10.1,4-\mathrm{H}), 5.33(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.30-7.43$ and $7.67-7.73(6 \mathrm{H}$, and $4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.73$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), \quad 19.31\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 21.36\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 24.60}\right.$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 26.80\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 26.96 \text { and } 27.02\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right) \text {, }}\right.$ 46.84 and 46.88 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 62.29 ($6-\mathrm{C}$), [$64.12,69.81$, 71.57 and 71.89 (2-C, 3-C, 4-C, 5-C)], 83.65 (1-C), 98.69 and 99.22 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), $[127.47,127.57,135.61$ and 135.94 (orthoand meta-C)], 129.47 and 129.51 (para-C), 133.45 and 133.99 (ipso-C); m/z (EI) 513 (M $-\mathrm{Me}-\mathrm{Bu}^{\text {t+ }}, 20 \%$), 392 (100), 159 (70), 143 (60), 91 (90) (Found: $\mathrm{M}-\mathrm{Me}-\mathrm{Bu}^{\text {t+, }}$ 513.1737. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{6} \mathrm{SSi}$ requires $\mathrm{M}, 513.1767$).
($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-P henyl 6 -0-tert-butyIdiphenylsilyl-3,4-0-(1',2'-dimethox ycyclohexane-1', $\mathbf{2}^{\prime}$-diyl)-1-seleno- α - - -mannopyranoside 32. CDA -derivative $10(2.29 \mathrm{~g}, 4.85 \mathrm{mmol})$ was subjected to the general procedure for silylation. Column chromatography ($\mathrm{Et} \mathrm{t}_{2} \mathrm{O}$-petrol $1: 2$ to $1: 1$) yielded $32\left(3.22 \mathrm{~g}, 95 \%\right.$), $[a]_{\mathrm{D}}^{25}+150$ (c 0.17 in CHCl_{3}) (Found: $\mathrm{C}, 62.0$; $\mathrm{H}, 6.7 . \mathrm{C}_{36} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{SeSi}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}, 6.6 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.03\left[9 \mathrm{H}, \mathrm{S}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.33-1.57 and 1.67-1.83 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-$ H), $2.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.9, \mathrm{OH}), 3.17$ and $3.27\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{l}^{\prime}-\right.$ OM e, 2'-OM e), 3.86 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,1.8,6-\mathrm{H}_{\mathrm{A}}$), $3.99(1 \mathrm{H}, \mathrm{dd}$, J 10.4, 4.1, 6-H ${ }_{\mathrm{B}}$), $4.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4,2.9,3-\mathrm{H}$), $4.23(1 \mathrm{H}$, ddd, J $10.0,3.8,1.7,5-\mathrm{H}$), 4.31 ($1 \mathrm{H}, \mathrm{br}$ s, 2-H), 4.45 ($1 \mathrm{H}, \mathrm{dd}$, J $2 \times 10.2,4-\mathrm{H}), 5.83(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}),[7.14-7.44,7.49-7.55$ and 7.64-7.70 ($9 \mathrm{H}, 2 \mathrm{H}$ and $4 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H})$); $\delta_{\mathrm{c}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 19.37\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right], 21.37\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.88\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] \text {, }, \text {, }{ }^{2} .}\right.$ 26.98 and 27.06 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.97 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e)}$,62.04 (6 C), [63.58, 70.12, 72.35 and 74.25 ($2-\mathrm{C}, 3-\mathrm{C}, 4-\mathrm{C}, 5-\mathrm{C}$)], 86.36 (1-C), 98.78 and 99.34 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), [127.48, 127.51, 127.58 , 127.79, 129.10, 129.46, 129.48, 129.92, 133.29, 133.63, 134.05, 135.57 and 135.94 (Ar-H)]; m/z (+FAB) 1208 (50\%), 722 ($\mathrm{M}+\mathrm{Na}, 60$), $697\left(10, \mathrm{M}-\mathrm{H}^{+}\right), 682\left(20, \mathrm{M}-\mathrm{M} \mathrm{e}{ }^{+}\right), 510(60)$,

365 (50), 197 (50), 135 (100) (Found: 697.2103. $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{O}_{7} \mathrm{SeSi}$ requires M, 697.2099).
($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-E thyl $\quad 6-0$-benzoyl-3,4-0-($\mathbf{1}^{\prime}, 2^{\prime}$-dimethoxycyclo-hexane- $1^{\prime}, 2^{\prime}$-diyl)-1-thio- α-D-mannopyranoside 33, ($\mathbf{1}^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)ethyl 2-0-benzoyl-3,4-0-($\mathbf{1}^{\prime}, 2^{\prime}$-dimethoxycyclohexane- $\mathbf{1}^{\prime}, 2^{\prime}$-di-$\mathrm{yl})-1$-thio- α-d-mannopyranoside 34 and ($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2}^{\prime} \mathrm{S}$)-ethyl $\mathbf{2 , 6 - d i - 0 -}$ benzoyl-3,4-0-($1^{\prime}, 2^{\prime}$-dimethox ycyclohexane-1', $\mathbf{2}^{\prime}$-diyl)-1-thio-$\boldsymbol{\alpha}-\mathrm{D}$-mannopyranoside 35. M ethod A.-Benzoyl chloride (0.18 $\mathrm{ml}, 0.22 \mathrm{~g}, 1.6 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to CDA-protected S-ethyl mannoside 8 ($571 \mathrm{mg}, 1.58 \mathrm{mmol}$) in pyridine (4.0 ml). The reaction was gradually warmed to room temperature and stirred for 2 days. A fter removal of the solvent under reduced pressure the crude material was purified by column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol 1:2 to $\mathrm{Et}_{2} \mathrm{O}$) to furnish, in order of elution, dibenzoylated 35 ($124 \mathrm{mg}, 28 \%$ relative to benzoyl chloride), 2-0-benzoylated 34 ($96 \mathrm{mg}, 13 \%$) and the 6 -0-protected mannoside 33 ($398 \mathrm{mg}, 54 \%$).
M ethod B.-CDA-protected S-ethyl mannoside 8 (5.91 g , 16.3 mmol) and bis(tributyltin) oxide ($6.65 \mathrm{ml}, 13.1 \mathrm{mmol}$) were refluxed in toluene (55 ml) under D ean-Stark conditions (trap filled with $4 \AA$ mol. sieves) for 2 days. The mixture was cooled to room temperature, benzoyl chloride ($2.08 \mathrm{ml}, 18.0 \mathrm{mmol}$) was added and the mixture stirred for 7 h . A fter quenching with saturated aqueous sodium hydrogen carbonate (20 ml), the mixture was extracted with DCM ($3 \times 40 \mathrm{ml}$) and the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude reaction mixture was purified by column chromatography to furnish 6monobenzoylated $33(6.17 \mathrm{~g}, 81 \%)$ together with traces of 2,6 dibenzoylated compound 35 ($608 \mathrm{mg}, 8 \%$).

M ethod C.-In a two step procedure 6-0-silylated CDAderivative 31 was benzoylated using method A. Desilylation in TBAF-THF was followed by column chromatography to yield the 2-benzoylated compound $\mathbf{3 4}$ (71% from CDA -protected Sethyl mannoside).
Compound 33: $[a]_{0}^{19}+220\left(c 0.63\right.$ in CHCl_{3}) (Found: $\mathrm{C}, 58.1$; $\mathrm{H}, 7.0 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 57.85 ; \mathrm{H}, 7.0 \%$); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$), $1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right.$), 1.29-1.54 and 1.66-1.83 ($\left.2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.58(1 \mathrm{H}$, dq, J 13.0, 7.4, SCH $\left.{ }_{A} H_{B}\right), 2.67\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$) [from 200 M Hz spectra: ca. $2.7(1 \mathrm{H}$, br s, OH$)$], 3.09 and 3.22 ($2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 4.06 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.8,0.9$, 2H), 4.18 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.2,3.0,3-\mathrm{H}), 4.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 9.9,4-$ H), 4.43-4.59 ($3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}$), $5.33(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.40$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6$, meta-H), $7.52(1 \mathrm{H}$, brt, J 7.0, para-H), $8.03(2 \mathrm{H}$, br d, J 7.0, ortho-H); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.90\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, 21.32 ($4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}$), $25.06\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 26.94$ and 27.01 ($3^{\prime}-\mathrm{C}, 6^{\prime}-$ C), 46.83 and 46.91 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 63.17 ($6-\mathrm{C}$), [64.43 , 69.09, 69.65 and 71.43 (2-C, 3-C, 4-C, 5-C)], 84.54 (1-C), 98.93 and 99.32 ($1^{\prime}-C, 2^{\prime}-C$), 128.33 and 129.66 (ortho- and meta-C), 130.01 (ipso-C), 133.01 (para-C), 166.37 (CO); m/z (EI) 468 ($\mathrm{M}^{+}, 10 \%$), 453 ($80, \mathrm{M}^{+}-\mathrm{Me}$), 437 ($20, \mathrm{M}^{+}$- OM e), 143 (50), 105 (100) (Found: M^{+}, 468.1820. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~S}$ requires M , 468.1818).

Compound 34: $[a]_{D}^{25}+169$ (c 1.39 in CHCl_{3}) (Found: C, 59.1; $\mathrm{H}, 7.0 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~S}$ requires $\left.\mathrm{C}, 58.95 ; \mathrm{H}, 6.9 \%\right)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 1.29\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 1.32-1.81\left(8 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$, $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 1.86(1 \mathrm{H}, \mathrm{br}$ t, J ca. 3-4, OH), $2.65(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 3.24$ and $3.28\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{I}^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OMe}\right)$, $3.85\left(2 \mathrm{H}, \mathrm{br} \mathrm{S}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 4.21(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.0,2 \times 3.4,5-$ H), 4.34 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,2.9,3-\mathrm{H}$), $4.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.3,4-$ H), $5.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9,1.4,2-\mathrm{H}), 5.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.7,1-\mathrm{H}), 7.45$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.7$, meta-H), 7.57 ($1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 7.5,1.5$, para-H), 8.07 (2 H, br d, J 8, ortho-H); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 15.01\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, 21.30 and $21.40\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 25.91\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 26.91$ and 26.99 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.84 and 46.96 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 61.38 ($6-\mathrm{C}$), [$64.64,67.62,71.31$ and 73.54 (2-C, 3-C, 4-C, 5-C)], 83.26 (1-C), 98.74 and 99.11 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), 128.44 and 129.91 (ortho- and metaC), 130.22 (ipso-C), 133.18 (para-C), 165.97 (CO); m/z (EI) 468 ($\mathrm{M}^{+},<10 \%$), 453 ($50, \mathrm{M}^{+}-\mathrm{M} \mathrm{e)}$,437 ($30, \mathrm{M}^{+}-\mathrm{OM} \mathrm{e}$), 314 (50),

293 (50), 105 (100), 77 (60) (Found: M^{+}, 468.1821. $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~S}$ requires M , 468.1818).

Compound 35: (slightly impure) $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCI}{ }_{3}\right) 1.29$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{SCH}_{2} \mathrm{CH}_{3}$), 1.3-1.8 ($8 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$), $2.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 3.14$ and $3.25\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{OM} \mathrm{e}\right.$, 2'-OM e), 4.39 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4,2.9,3-\mathrm{H}$), 4.53 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.2$, 4.0, 2.0, 5-H), $4.56\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.7,2.0,6-\mathrm{H}_{\mathrm{A}}\right), 4.62(1 \mathrm{H}, \mathrm{dd}$, J $\left.12.1,4.4,6-\mathrm{H}_{\mathrm{B}}\right), 4.66(1 \mathrm{H}, \mathrm{dd}$, J $2 \times 10.2,4-\mathrm{H}), 5.39(1 \mathrm{H}$, dd, J $2.8,1.3,2-\mathrm{H}), 5.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.9,1-\mathrm{H}), 7.33-7.62$ and $8.01-$ $8.13(6 \mathrm{H}$ and $4-\mathrm{H}, 2 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 15.09$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.29$ and $21.38\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 25.90\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, 27.87 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.86 and 46.99 ($1^{\prime}-\mathrm{OM}$ e, $2^{\prime}-\mathrm{OM}$ e), 62.81 ($6-$ C), [64.60, 67.31, 69.38 and 73.37 (2-C, 3-C, 4-C, 5-C)], 83.24 (1-C), 98.92 and 99.19 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), [128.36, 128.42, 129.61, 129.90, 133.04, 133.14 and $130.04,130.32$ ($2 \times$ ipso-C), Ar-C], 165.85 and 166.29 ($2 \times \mathrm{CO}$); m/z (EI) 572 (${ }^{+},<10 \%$), 557 ($80, M^{+}-\mathrm{Me}$), 511 (60), 450 (50), 418 (80), 275 (60), 154 (60), 143 (70), 105 (100), 91 (70), 77 (40) (Found: $\mathrm{M}^{+}, 572.2118$. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O} \mathrm{g}_{\mathrm{g}}$ requires M , 572.2080).
($\mathbf{1}^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-P henyl 6 -0-benzoyl-3,4-0-($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-dimethoxycyclo-hexane- $1^{\prime}, 2^{\prime}$-diyl)-1-seleno- α-D-mannopyranoside 36. CDA protected selenomannoside 10 ($936 \mathrm{mg}, 2.04 \mathrm{mmol}$) and bis(tributyltin) oxide ($0.78 \mathrm{ml}, 1.5 \mathrm{mmol}$) were refluxed in toluene (25 ml) under Dean-Stark conditions (trap filled with $4 \AA$ molecular sieves) for 24 h . The mixture was cooled to room temperature, benzoyl chloride ($2.08 \mathrm{ml}, 2.52 \mathrm{~g}, 18.0 \mathrm{mmol}$) was added and the mixture stirred for 24 h . A fter quenching with saturated aqueous sodium hydrogen carbonate solution (20 ml), the mixture was extracted with DCM ($3 \times 40 \mathrm{ml}$) and the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the crude reaction mixture was purified by column chromatography to furnish 6 -monobenzoylated 36 ($878 \mathrm{mg}, 76 \%$), $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3$) 1.29-1.60 and 1.67-1.86 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}$), 2.74 (1 H , br s, OH), 3.11 and 3.28 ($2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 4.20 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3,2.9,3-\mathrm{H}$), $4.33(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 2.0,2-\mathrm{H}), 4.43$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.0,4-\mathrm{H}$) $4.47-4.60\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right.$), $5.86(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}),[7.12-7.28(3 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.7), 7.50-$ $7.61(3 \mathrm{H}, \mathrm{m})$ and $8.00(2 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 7.5)$, ($\mathrm{Ar}-\mathrm{H}$)]; $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $21.34\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 26.98$ and $27.05\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 46.91$ and 47.01 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 63.06 ($6-\mathrm{C}$), [$64.33,69.93,71.29$ and 71.99 ($2-\mathrm{C}, 3-\mathrm{C}, 4-\mathrm{C}, 5-\mathrm{C}$)], 85.83 (1-C), 99.01 and 99.43 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), $[127.82,128.35,129.19,129.75,129.94,130.15$, 133.03 and 133.84 (Ar-C)], 166.36 (CO); m/z (EI) 564 (M ${ }^{+}$, 30%), 533 ($80, \mathrm{M}-\mathrm{M} \mathrm{e}^{+}$), 407 (50), 143 (50), 375 (40), 105 (100) (Found: $\mathrm{M}^{+}, 564.1261$. $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{8}$ Se requires $\mathrm{M}, 564.1262$).
($\mathbf{1}^{\prime} \mathrm{S}, \mathbf{2}^{\prime} \mathrm{S}$)-M ethyl $\quad 2-0$-benzyl-3,4-0-(1',2'-dimethoxycyclo-hexane-1', $\mathbf{2}^{\prime}$-diyl)- α-d-mannopyranoside 37. CDA protected mannoside $5(20 \mathrm{~g}, 0.06 \mathrm{~mol})$ was added to a suspension of sodium hydride (2.7 g , of a 60% suspension in mineral oil, 0.07 mol) in DM F (70 ml). The reaction was stirred for 2 h at room temperature. Benzyl bromide ($7.84 \mathrm{ml}, 0.066 \mathrm{~mol}$) was added slowly and the reaction mixture stirred for 15 h . Saturated aq. ammonium chloride (50 ml) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 300 \mathrm{ml})$. The combined organic extracts were washed with brine (200 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure and the residue purified by column chromatography (eluent $\mathrm{Et}_{2} \mathrm{O}$-hexane 1:1) to give the 2-0-benzylated derivative 37 ($19.1 \mathrm{~g}, 75 \%$) as a white foam, $[a]_{0}^{19} 33$ (c 0.96 in CHCl_{3}) (Found: $\mathrm{C}, 61.9 ; \mathrm{H}, 7.6$. $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{8}$ requires C, $62.25 ; \mathrm{H}, 7.6 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ [1.30-1.45, 1.48-1.57 and 1.65-1.90 ($2 \mathrm{H}, 2 \mathrm{H}$ and $4 \mathrm{H}, 3 \times \mathrm{m}$, $\left.\left.3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)\right], 2.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.5,7.3,6-\mathrm{OH}), 3.23$ and $3.24\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{l}^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right), 3.31(3 \mathrm{H}, \mathrm{s}, 1-$ OM e), 3.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.5,2.7,2-\mathrm{H}$), 3.73-3.85 (3H, m, 5-H, 6$\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}$), $4.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.7,10.6,3-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6$, 9.6, 4-H), 4.63(1 H, d, J 11.7, CH ${ }_{A} H_{B}$ Ph), $4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,1-$ H), $4.98\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 7.24-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$; $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.38$ and $21.45\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 27.04$ and $27.16\left(3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}\right), 46.77$ and 46.88 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 54.70 ($1-$

OM e), 61.80 ($6-\mathrm{C}$), [64.77, 69.67, 71.12 and 76.12 (2-C, 3-C, 4 $\mathrm{C}, 5-\mathrm{C})$], $73.35\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 98.49$ and 98.78 ($\left.1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}\right), 100.80$ (1-C), [127.54, 128.16, 128.24 and 138.67 (A r-C)]; m/z (EI) 424 ($\mathrm{M}^{+}, 10 \%$), 409 ($20, \mathrm{M}^{+}-\mathrm{Me}$), 392 ($100, \mathrm{M}^{+}-\mathrm{MeOH}$), 143, 91 (F ound: $\mathrm{M}^{+}, 424.2098 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{8}$ requires $\mathrm{M}, 424.2097$).
(1^{\prime} S, $\mathbf{2}^{\prime}$ 'S)-E thyl 2-0-benzyl-3,4-0-($\mathbf{1}^{\prime}, 2^{\prime}$-dimethoxycyclohex-ane-1', $\mathbf{2}^{\prime}$-diyl)-1-thio- $\boldsymbol{\alpha}$-d-mannopyranoside 38. Sodium hydride (0.08 g of a 60% dispersion in mineral oil, 2.0 mmol) was added to a solution of CDA protected thiomannoside $8(0.36 \mathrm{~g}, 1.0$ mmol) and benzyl bromide ($0.13 \mathrm{ml}, 1.05 \mathrm{mmol}$) in D M F (5 ml) at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-10^{\circ} \mathrm{C}$ then allowed to warm to room temperature overnight. Saturated aqueous ammonium chloride solution (25 ml) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined extracts were washed with water ($3 \times 10 \mathrm{ml}$) and brine (10 ml) and dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$. The solvent was removed under reduced pressure and the residue purified by column chromatography (eluent: petrol-EtOA c 4:1) gave the mono benzylated product $38(0.38 \mathrm{mg}, 84 \%)$ as a colourless foam, $[a]_{0}^{19} 226$ (c 0.93 in CHCl_{3}) (Found: $\mathrm{C}, 60.9 ; \mathrm{H}, 7.6 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 60.8 ; \mathrm{H}$, 7.5%); $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.23\left(3 \mathrm{H}, \mathrm{t}\right.$, J 7.4, $\mathrm{SCH}_{2} \mathrm{CH}_{3}$), [1.33-1.45, 1.50-1.53 and 1.68-1.85 ($2 \mathrm{H}, 2 \mathrm{H}$ and $4 \mathrm{H}, 3 \times \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$], $1.99(1 \mathrm{H}, \mathrm{br} 5, \mathrm{OH}), 2.54(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}$ $13.0,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.60\left(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.0,7.4, \mathrm{SCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right.$), 3.23 and $3.24\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right), 3.78-3.80(2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right), 3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,2-\mathrm{H}), 4.13(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 9.9,3.9,5-$ H), $4.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.6,10.5,3-\mathrm{H}), 4.42(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.3,4-\mathrm{H})$, 4.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}$), $4.96\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right.$ Ph), $5.24(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}),[7.27(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.3), 7.33(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2)$ and $7.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3)(\mathrm{Ar}-\mathrm{H})$]; $\delta_{\mathrm{c}}\left(50 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.87$ $\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 21.31$ and $21.37\left(4^{\prime}-\mathrm{C}\right.$ and $\left.5^{\prime}-\mathrm{C}\right), 25.35$ and 27.02 ($3^{\prime}-\mathrm{C}$ and $6^{\prime}-\mathrm{C}$), $26.95\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right), 46.73$ and 46.78 ($1^{\prime}-\mathrm{OM} \mathrm{e}$, 2'-OM e), 61.61 ($6-\mathrm{C}), 64.84(4-\mathrm{C}), 70.17(3-\mathrm{C}), 72.29(5-\mathrm{C})$, $73.12\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 77.98(2-\mathrm{C}), 84.10(1-\mathrm{C}), 98.41$ and 98.76 ($1^{\prime}-\mathrm{C}$ and $2^{\prime}-\mathrm{C}$), [127.53, 128.01, 128.22 and 138.52 (Ar-C)]; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 439\left(\mathrm{M}^{+}-\mathrm{Me}\right), 422\left(\mathrm{M}^{+}-\mathrm{MeOH}\right), 361,91$ (Found: $\mathrm{M}^{+}-\mathrm{Me}$ 439.1782. $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~S}$ requires M , 439.1790).
($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-M ethyl 6 -deoxy-3,4-0-($\mathbf{1}^{\prime}, \mathbf{2}^{\prime}$-dimethoxycyclohex-ane-1', $\mathbf{2}^{\prime}$-diyl)-6-iodo- α-d-mannopyranoside 39. Iodine (610 $\mathrm{mg}, 2.40 \mathrm{mmol}$) was added to a mixture of CDA-derivative $\mathbf{5}$ ($618 \mathrm{mg}, 1.85 \mathrm{mmol}$), imidazole ($377 \mathrm{mg}, 5.54 \mathrm{mmol}$) and triphenylphosphine ($727 \mathrm{mg}, 2.77 \mathrm{mmol}$) in toluene (40 ml). The mixturewas stirred at $75^{\circ} \mathrm{C}$ for 3 h , then it was poured into saturated aqueous sodium hydrogen carbonate (45 ml), stirred for 5 min , treated with iodine until the red-brown colour persisted and finally titrated with 10% aqueous sodium thiosulfate until the solution was colourless again. The organic layer was separated and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude material was purified by column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol $1: 1$ to $\mathrm{Et}_{2} \mathrm{O}$) to yield 39 ($496 \mathrm{mg}, 60 \%$), $[a]_{0}^{18}+133$ (0.16 in CHCl_{3}) (Found: $\mathrm{C}, 40.7 ; \mathrm{H}, 5.8 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{I} \mathrm{O}_{7}$ requires $\mathrm{C}, 40.55 ; \mathrm{H}, 5.7 \%$); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.29-1.58$ and 1.63-1.82 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}$, $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 2.56(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.20,3.21(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}$, $1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM}$ e), $3.25\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6,8.2,6-\mathrm{H}_{\mathrm{A}}\right), 3.42(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{OM}$ e), $3.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6,2.3,6-\mathrm{H}_{\mathrm{B}}\right.$), 3.68 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.0$, 7.7, 2.2, 5-H), $3.92(1 \mathrm{H}, \mathrm{br}$ s, $2-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.0,4-$ H), 4.12 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3,3.0,3-\mathrm{H}$), 4.73 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$); $\delta_{\mathrm{c}}(100$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 5.07(6-\mathrm{C}), 21.32$ and 21.36 ($4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}$), 26.96 and 27.07 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.99 and 47.18 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 55.16 (1-OM e), [67.88, 68.58, 70.12 and 70.23 (2-C, 3-C, 4-C, 5C)], 98.92 and 99.21 ($\left.1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}\right), 101.19$ (1-C); m/z (EI) 444 (${ }^{+}, 20 \%$), 430 (700), 209 (60), 143 (100), 111 (50) (Found: M^{+}, 444.0666. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{7}$ requires M , 444.0647).
(1'S,2'S)-M ethyl 3,4-0-(1', 2'-dimethoxycyclohexane-1', $\mathbf{2}^{\prime}$ -diyl)-a-D-rhamnopyranoside 40 . Iodo compound 39 (466 mg , 1.05 mmol) was stirred with 10% palladium on charcoal (40 mg) and diethylamine in cyclohexane (15 ml) under a hydrogen atmosphere for 16 h . The suspension was filtered and the filtrate was concentrated under reduced pressure. The residue was
purified by column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$ petrol $3: 1$ to $\mathrm{Et}_{2} \mathrm{O}$) to yield $\mathbf{4 0}(276 \mathrm{mg}, 83 \%)$. Its N M R spectra are identical to the reported data for the l-compound 12.
Compound 40: $[a]_{0}^{18}+190\left(\mathrm{c} 0.76\right.$ in CHCl_{3}); m/z (EI) 318 ($\mathrm{M}^{+}, 10 \%$), 303 ($70, \mathrm{M}^{+}-\mathrm{Me}$ e, 287 ($30, \mathrm{M}^{+}$- OM e), 175 (40), 143 (100), 111 (50), 84 (100) (Found: $\mathrm{M}^{+}, 318.1677 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{7}$ requires $\mathrm{M}, 318.1678$).
($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-M ethyl 2-0-benzyl-6,7-dideoxy-3,4-0-($\mathbf{1}^{\prime}, 2^{\prime}$ dimethox ycyclohexane- $\mathbf{1}^{\prime}, 2^{\prime}$-diyl)- α-D-manno-hept-6-enopyr-
anoside 41. Dimethyl sulfoxide ($6.7 \mathrm{ml}, 0.094 \mathrm{~mol}$) was added to a solution of oxalyl dichloride ($40 \mathrm{ml}, 0.08 \mathrm{~mol}$) in dichloromethane (300 ml) at $-78^{\circ} \mathrm{C}$ and stirred for 20 min . A solution of CDA mannose derivative 37 ($30.79 \mathrm{~g}, 0.072 \mathrm{~mol}$) in dichloromethane (80 ml) was added slowly. The mixture was stirred for 40 min and triethylamine ($30.1 \mathrm{ml}, 0.22 \mathrm{~mol}$) was added. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for a further 3 h and then concentrated under reduced pressure to give the crude aldehyde which was used directly without further purification.

Butyllithium (1.6 m in hexane, $43 \mathrm{ml}, 0.11 \mathrm{~mol}$) was added slowly to a solution of methyl(triphenyl)phosphonium bromide $(38.84 \mathrm{~g}, 0.11 \mathrm{~mol})$ in tetrahydrofuran (150 ml) at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 20 min . This solution was then added to a solution of the crude aldehyde in tetrahydrofuran (300 ml) at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 1 h . Saturated aq. ammonium chloride (200 ml) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 300 \mathrm{ml})$ and the combined organic extracts dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by column chromatography (eluent $\mathrm{Et}_{2} \mathrm{O}$-hexane 3:7) to give alkene 41 ($19.2 \mathrm{~g}, 63 \%$) as a white solid, $[a]_{0}^{18}+130$ (c 0.93 in CHCl_{3}) (Found: $\mathrm{C}, 65.8 ; \mathrm{H}, 7.7 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7}$ requires C , $65.7 ; \mathrm{H}, 7.7 \%) ; \delta_{\mathbf{H}}\left(500 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ [1.39-1.42, 1.50-1.54 and $1.70-1.82\left(2 \mathrm{H}, 2 \mathrm{H}\right.$ and $\left.4 \mathrm{H}, 3 \times \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, 3.19 and $3.24\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right), 3.32(3 \mathrm{H}, \mathrm{s}, 1-$ OM e), 3.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.5,2.6,2-\mathrm{H}$), 4.12-4.15 (2 H , m, 4-H,5H), 4.22 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3,2.6,3-\mathrm{H}$), 4.67 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{-}$ $\mathrm{Ph}), 4.68(1 \mathrm{H}, \mathrm{br} \mathrm{S}, 1-\mathrm{H}), 4.96\left(1 \mathrm{H}, \mathrm{J} 12.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 5.23$ (1 H , dd, J $10.4,0.9,7-\mathrm{H}_{\mathrm{A}}$) $5.45\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.3,0.9,7-\mathrm{H}_{\mathrm{B}}\right), 5.95$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4,6-\mathrm{H}$), $7.26-7.45$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 21.41 and 21.47 ($4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}$), 27.08 and 27.14 ($3^{\prime}-\mathrm{C}, 6^{\prime}-$ C), 46.65 and 46.84 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 54.62 ($1-\mathrm{OM} \mathrm{e)}$, (4-C), $69.84(3-\mathrm{C}), 71.37(5-\mathrm{C}), 73.21\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 76.05(2-\mathrm{C})$, 98.57 and 98.74 ($1^{\prime}-C, 2^{\prime}-C$), 100.59 (1-C), 117.73 (C-7), 134.29 (6-C), 127.44, 128.13, 128.18 and 138.8 (Ar-C); m/z (EI) 420 ($\mathrm{M}^{+}, 0.1 \%$), 405 ($5, \mathrm{M}^{+}-\mathrm{M} \mathrm{e}$), 388 ($15, \mathrm{M}^{+}-\mathrm{M} \mathrm{eOH}$) (Found: $\mathrm{M}^{+}, 420.2163 . \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{7}$ requires $\mathrm{M}, 420.2148$).

8-(M ethoxycarbonyl)octyl 6-0-benzoyl-3,4-0-($1^{\prime}, 2^{\prime}$-dimeth-oxycyclohexane-1', $\mathbf{2}^{\prime}$-diyl)- β-d-mannopyranoside 42. A solution of CDA protected mannoside 33 ($469 \mathrm{mg}, 1.0 \mathrm{mmol}$), dimethyl (dichloro)silane ($0.6 \mathrm{ml}, 5.0 \mathrm{mmol}$) and pyridine (1.5 ml) in toluene (15 ml) was stirred for 1 h at room temperature. The toluene was then removed by distillation, and the reaction cooled to room temperature. 8-(M ethoxycarbonyl)octanol (196 $\mathrm{mg}, 0.78 \mathrm{mmol}$) was added and the mixture was stirred for 12 h . The mixture was diluted with ether (20 ml) and washed with water (10 ml) and brine (10 ml) and dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$. The solvents were removed under reduced pressure and the residue purified by column chromatography (eluent petrol-ether 1:1) to furnish the intermediate silyl-acetal which was used without further purification.

The intermediate ($556 \mathrm{mg}, 0.78 \mathrm{mmol}$) was dissolved in nitromethane (24 ml) and N -iodosuccinimide ($430 \mathrm{mg}, 1.9$ mmol) was added. The mixture was heated under reflux for 1 h and cooled to room temperature. The mixture was partitioned between DCM and 40% aq. sodium thiosulfate. The organic extract was concentrated under reduced pressure and the residue purified by column chromatography (gradient elution etherhexane $1: 1$ to $3: 1$) to yield the β-glycoside 42 ($283 \mathrm{mg}, 61 \%$), [a] $]_{0}^{30}+8.6$ (c 0.7 in CHCl_{3}) (Found: $\mathrm{C}, 61.2 ; \mathrm{H}, 7.7$. $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{11} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 61.7 ; \mathrm{H}, 7.85 \%\right)$; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}$;
CDCl_{3}) $1.20-1.88\left[20 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, \mathrm{OCH}_{2}-\right.$ $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$], $2.24\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 2.41(1 \mathrm{H}$, d, J $1.6, \mathrm{OH}$), 3.09 and $3.20\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}\right)$, $3.50\left[1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 9.5,6.9,0 \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$], $3.62(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 3.73 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 1.6,5.6,9.8,5-\mathrm{H}$), $3.84-3.89$ [$2 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}_{2} \mathrm{M}$ e], $4.01(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}), 4.34(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 10.1, 4-H), 4.43 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.6,11.9,6-\mathrm{H}_{\mathrm{A}}$), 4.54 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.8$, 1-H), 4.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.3,11.8,6-\mathrm{H}_{\mathrm{B}}$), $7.39(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.9$, metaH), 7.52 ($1 \mathrm{H}, \mathrm{tt}, \mathrm{J}$ 1.2, 7.7, para-H), 8.03 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.3,7.7$, ortho-H); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.21,24.73,25.72,26.83$, 26.92, 28.38, 28.87 and $29.28\left[3^{\prime}-\mathrm{C}, 4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}, \mathrm{OCH}_{2}{ }^{-}\right.$ $\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$], $33.90\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), 46.67 and $46.80\left(1^{\prime}-\right.$ OM e and $2^{\prime}-\mathrm{OM} \mathrm{e}$), 51.31 ($\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 62.96 ($6-\mathrm{C}$), 63.76 (4-C), $69.67(2-\mathrm{C}), 69.75\left[\mathrm{OCH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$], $70.72(3-\mathrm{C}), 72.21$ (5C), 99.08 and 99.60 ($\left.1^{\prime}-C^{\prime}, 2^{\prime}-C\right), 100.08$ ($1-$ C $^{1}{ }^{1}$ Сн 158), [128.19, 129.58, 129.87 and 132.89 ($\mathrm{Ar}-\mathrm{C}$)], $166.21\left(\mathrm{CH}_{2} \mathrm{CO}\right), 174.12$ (ArCO); m/z (EI) $1126\left(2 \mathrm{M}^{+}, 5 \%\right), 563\left(50, \mathrm{M}-\mathrm{OM} \mathrm{e}{ }^{+}\right), 375$, 142 (Found: $\mathrm{M}^{+}-\mathrm{OMe}$ 563.2843. $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{O}_{10}$ requires M , 563.2856).
($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-M ethyl $\quad 3,4-0-\left(1^{\prime}, 2^{\prime}\right.$-dimethoxycyclohexane-1 $\mathbf{1}^{\prime}, 2^{\prime}$ -diyl)-2,6-di-0-methyl- α-D-mannopyranoside 43. M ethyl iodide ($0.24 \mathrm{ml}, 3.9 \mathrm{mmol}$) was added to a stirred suspension of CDA protected methyl mannoside 5 ($518 \mathrm{mg}, 1.55 \mathrm{mmol}$) and potassium hydride ($173 \mathrm{mg}, 4.36 \mathrm{mmol}$) in DM F (5.0 ml). A fter 24 h more potassium hydride (ca. 50 mg) and methyl iodide (ca. 0.10 ml) were added and the mixture stirred for a further 24 h . The reaction was quenched by addition of saturated aqueous ammonium chloride (5 ml) and water (5 ml). Following extraction with ether ($3 \times 25 \mathrm{ml}$), the combined organic extracts were dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and the solvent removed under reduced pressure The residue was purified by column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol 1:1 to $\mathrm{Et}_{2} \mathrm{O}$) to furnish 43 (555 mg , 99%) as a colourless oil, [$\alpha]_{D}^{18}+157$ (c 0.63 in CHCl_{3}); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.23$-1.53 and 1.59-1.82 ($2 \times 4 \mathrm{H}, 2 \times \mathrm{m}, 3^{\prime}-\mathrm{H}$, $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right), 3.15$ and $3.18\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\right.$ OM e), 3.33 and $3.34(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 2-\mathrm{OM} \mathrm{e}, 6-\mathrm{OM} \mathrm{e}$), 3.41 (1 H, br s, 2-H), 3.44 (3 H, s, 1-OM e), 3.54 (1 H, dd, J 10.6, 5.6, 6$\left.\mathrm{H}_{\mathrm{A}}\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6,2.2,6-\mathrm{H}_{\mathrm{B}}\right), 3.80(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.0,5.3$, 2.1, 5-H), 4.09-4.18 (2 H , m, 3-H, 4-H), 4.75 (1 H, d, J 1.2, 1-H); $\delta_{\mathrm{C}}\left(100 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right) 21.38$ and $21.41\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right), 27.05\left(3^{\prime}-\mathrm{C}\right.$, $6^{\prime}-\mathrm{C}$), 46.60 and 46.80 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\mathrm{OM} \mathrm{e}$), 54.73 ($1-\mathrm{OM} \mathrm{e}$), 58.90 and 59.22 ($2-\mathrm{OM} \mathrm{e}, 6-\mathrm{OM} \mathrm{e}$), [$64.22,68.99$ and 70.26 (3-C, 4-C, 5-C)], 70.86 ($6-C$), 78.70 (2-C), 98.45 and 98.83 ($1^{\prime}-\mathrm{C}, 2^{\prime}-$ C), 98.93 ($1-\mathrm{C}$); m/z (EI) 362 ($\mathrm{M}^{+}, 60 \%$), 347 ($60, \mathrm{M}^{+}-\mathrm{Me}$), 331 ($40, M^{+}-\mathrm{M} \mathrm{eO}$), 143 (100), 128 (90), 111 (80), 97 (80) (Found: $\mathrm{M}^{+}, 362.1941 . \mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{8}$ requires $\mathrm{M}, 362.1940$).
($1^{\prime} \mathrm{S}, 2^{\prime} \mathrm{S}$)-M ethyl 2,6-di-0-benzyl-3,4-0-(1', $\mathbf{2}^{\prime}$-dimethoxy-cyclohexane- $1^{\prime}, 2^{\prime}$-diyl)- α-D-mannopyranoside 44. Protected mannoside $5(0.50 \mathrm{~g}, 1.5 \mathrm{mmol})$ was added to a suspension of sodium hydride (60% in mineral oil, $0.24 \mathrm{~g}, 3.3 \mathrm{mmol}$) in DM F (3.5 ml) and the mixture stirred for 16 h under A r. Benzyl bromide ($0.53 \mathrm{ml}, 4.5 \mathrm{mmol}$) and catalytic tetrabutylammonium iodide were added and the mixture was stirred for 16 h . Saturated aqueous ammonium chloride (5 ml) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{ml})$. The combined organic layers were washed with brine (20 ml), dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. Column chromatography of the residue (gradient elution, $\mathrm{Et}_{2} \mathrm{O}$-petrol 20:80-35:65) gave the title compound $44(0.60 \mathrm{~g}, 78 \%)$ as a pale yellow oil, $[\alpha]_{0}^{30}$ 96.5 (c 1.14 in CHCl_{3}); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right.$) $1.30-1.80$ ($8 \mathrm{H}, \mathrm{m}$, $\left.3-\mathrm{H}^{\prime}, 4-\mathrm{H}^{\prime}, 5-\mathrm{H}^{\prime}, 6-\mathrm{H}^{\prime}\right), 3.09$ and $3.19\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}-\right.$ OM e), 3.28 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM} \mathrm{e}$), 3.70-3.78 (3 H, m, 2-H, 6-H $\mathrm{H}_{\mathrm{A}}, 6-$ H_{B}), $3.91(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.7,9.5,3-\mathrm{H}), 4.37$ (1 H, t, J 10.4, 4-H) 4.71 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.7,1-\mathrm{H}$), [4.57 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1$), $4.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1)$ and $4.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 12.0) $\left.\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)\right],[7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1)$ and $7.20-7.35(8 \mathrm{H}, \mathrm{m})$ (Ar-H)]; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.40$ and $21.46\left(4^{\prime}-\mathrm{C}, 5^{\prime}-\mathrm{C}\right)$, 27.07 and 27.14 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.77 and 46.85 ($1^{\prime}-\mathrm{OM} \mathrm{e}, 2^{\prime}$ OM e), 54.61 (1-OM e), 68.91 (6-C), [64.62, 69.83, 71.12 and 76.20 ($2-\mathrm{C}, 3-\mathrm{C}, 4-\mathrm{C}, 5-\mathrm{C}$)], 73.04 and $73.44\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right.$), 98.48
and 98.73 ($\left.1^{\prime}-C, 2^{\prime}-C\right), 100.41$ (1-C), [127.26, 127.33, 127.47, 127.97, 128.15, 128.17, 138.68 and 138.91 (A r-C)]; m/z (EI) 514 (${ }^{+}$, 5\%), 499 ($20, \mathrm{M}-\mathrm{M} \mathrm{e)}$,482 ($95, \mathrm{M}^{+}-\mathrm{M} \mathrm{eOH}$), 189 (20), 181 (40), 159 (20), 143 (75), 127 (50), 111 (35), 91 (100, $\mathrm{C}_{7} \mathrm{H}_{7}$) (Found: $M^{+}, 514.2587 . \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{8}$ requires $\mathrm{M}, 514.2566$).
($1^{\prime} S, 2^{\prime} S$)-M ethyl $\quad 2,6-\mathrm{di}-0$-benzoyl-3,4-0-($1^{\prime}, 2^{\prime}$-dimethoxycyclohex ane-1', $\mathbf{2}^{\prime}$-diyl)- α-d-mannopyranoside 45. Benzoyl chloride ($0.68 \mathrm{ml}, 0.82 \mathrm{~g}, 5.9 \mathrm{mmol}$) was added to a solution of CDA protected methyl mannoside 5 ($654 \mathrm{mg}, 1.96 \mathrm{mmol}$) in pyridine $(8.0 \mathrm{ml})$ and the mixture stirred for 16 h . The reaction mixture was diluted with DCM (30 ml), washed with $1 \mathrm{~m} \mathrm{HCl}(15 \mathrm{ml})$, saturated aqueous sodium hydrogen carbonate (15 ml) and brine (15 ml), dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. The residue was chromatographed ($\mathrm{Et}_{2} \mathrm{O}-$ petrol 3:1) to furnish dibenzoylated $45(1.00 \mathrm{~g}, 94 \%),[a]_{0}^{18}+112$ (c 0.74 in CHCl_{3}) (F ound: $\mathrm{C}, 64.4 ; \mathrm{H}, 6.3 . \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{10}$ requires C , $64.2 ; \mathrm{H}, 6.3 \%) ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 1.32-1.79\left(8 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$, $\left.4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, 3.16 and $3.27\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, 1^{\prime}-\mathrm{OM} \mathrm{e}, \mathrm{2}^{\prime}-\right.$ OM e), $3.44(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.18 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10.0,2 \times 3.0,5-\mathrm{H}$), $4.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,2.9,3-\mathrm{H}), 4.60\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.3,6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}\right)$, 4.63 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 10.3,4-\mathrm{H}$), $4.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,1-\mathrm{H}), 5.30$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9,1.6,2-\mathrm{H}$), $7.33-7.65$ and $8.04-8.13(6 \mathrm{H}$ and 4 H , $2 \times \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 21.29$ and 21.39 ($4^{\prime}-\mathrm{C}, 5^{\prime}-$ C), 26.96 and 27.05 ($3^{\prime}-\mathrm{C}, 6^{\prime}-\mathrm{C}$), 46.83 and 47.02 ($1^{\prime}-0 \mathrm{Me}, 2^{\prime}-$ OM e), 55.14 (1-OM e), 62.76 (6-C), [64.32, 66.88, 67.00 and 71.53 (2-C, 3-C, 4-C, 5-C)], 98.91 and 99.16 ($1^{\prime}-\mathrm{C}, 2^{\prime}-\mathrm{C}$), 99.08 (1-C), $[128.39,129.61,129.90,133.04,133.10$ and 130.07, 130.30 ($2 \times$ ipso-C) (Ar-C)], 165.88 and 166.31 ($2 \times$ CO); m/z (EI) $542\left(\mathrm{M}^{+}, 20 \%\right), 527\left(80, \mathrm{M}^{+}-\mathrm{Me}\right), 511\left(10, \mathrm{M}^{+}-\mathrm{OM} \mathrm{e}\right)$, 143 (40), 105 (100), 77 (40) (Found: $\mathrm{M}^{+}, 542.2177 . \mathrm{C}_{29} \mathrm{H}_{34} \mathrm{O}_{10}$ requires $M, 542.2152$).
M ethyl 2,6-di-0-methyl- α-d-mannopyranoside 46 (methyl curamicoside). The CDA-protected mannoside 43 (207 mg , 0.571 mmol) was stirred for 5 min in 19:1 TFA -water mixture $(1.0 \mathrm{ml})$, the solvent was evaporated under reduced pressure, three drops of triethylamine were added and the crude material purified by column chromatography (gradient elution $\mathrm{Et}_{2} \mathrm{O}$ to $\mathrm{Et}_{2} \mathrm{O}+10 \% \mathrm{EtOH}$) to furnish 46 ($97 \mathrm{mg}, 76 \%$) as a colourless oil, $[a]_{\mathrm{D}}{ }^{18}+56.6$ (c 1.17 in CHCl_{3}) (lit., ${ }^{15}+58.6$ in $\mathrm{M} \mathrm{eOH}, 20^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.36,3.39$ and $3.43(3 \times 3 \mathrm{H}, 3 \times \mathrm{s}$, 1 OM e, 2-OM e, 6-OM e), 3.46 (1 H , dd, J 3.6, 1.4, 2-H), 3.59-3.67 ($3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 6-\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}$), 3.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2 \times 9.2,4-\mathrm{H}$), 3.81 (1 H, dd, J 9.5, 3.6, 3-H), 4.02 (2 H, br s, 3-OH , 4-OH), 4.79 (1 H , d, J 1.2, 1-H); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right), 54.99$ (1-OM e), 58.72 and 58.42 (2-OM e, 6-OM e), [69.32, 70.10 and 71.32 (3-C, 4-C, 5C)], 72.42 (6-C), 79.64 (2-C), 97.41 (1-C); m/z (EI) 222 (M ${ }^{+}$, <10\%), 191 ($60, \mathrm{M}^{+}-\mathrm{MeO}$), 173 (80), 159 (60), 87 (80), 74 (100) (F ound: $\mathrm{M}^{+}, 222.1100 . \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $\mathrm{M}, 222.1183$).

M ethyl 2,6-di-O-benzyl- α-d-mannopyranoside 47. M ethod A. - A cetic acid (4 ml) was added to a stirred solution of fully protected mannoside 44 ($130 \mathrm{mg}, 4.0 \mathrm{mmol}$) in a mixture of THF (1 ml) and water (1 ml). The mixture was heated to $60^{\circ} \mathrm{C}$ for 100 h . Sodium hydrogen carbonate was added until CO_{2} evolution ceased and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10$ ml). The combined organic layers were washed with saturated aqueous sodium hydrogen carbonate (10 ml), dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and the solvent evaporated under reduced pressure to give the title compound 47 ($85 \mathrm{mg}, 90 \%$) as a pale yellow oil.

M ethod B.-A queous trifluoroacetic acid ($40 \%, 1 \mathrm{ml}$) was added to fully protected mannoside 44 (53 mg) and the mixture stirred overnight. Work-up as in procedure A gave the title compound 47 ($33 \mathrm{mg}, 86 \%$), $[a]_{0}^{30}-5.4$ (c 0.72 in CHCl_{3}); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 2.60(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 3.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 3.35 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM}$ e), 3.66-3.80 ($6 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}, 6-$ $\mathrm{H}_{\mathrm{A}}, 6-\mathrm{H}_{\mathrm{B}}$), $[4.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7), 4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.8), 4.64(1 \mathrm{H}$, d, J 12.6) and $4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7)\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{J}, 4.80(1 \mathrm{H}, \mathrm{s}, 1-$ H), 7.25-7.40 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl})_{3} 54.93$ (1OM e), $70.30(6-\mathrm{C}), 72.98$ and $73.59\left(2 \times \mathrm{CH}_{2} \mathrm{Ph}\right)[69.71,70.73$, 71.57 and 77.83 (2-C, 3-C, $4-\mathrm{C}, 5-\mathrm{C}$)], 98.20 (1-C), [127.64, 127.87, 128.00, 128.39, 128.56, 137.75, 138.21 (A r-C)]; m/z (EI)
$374\left(M^{+}, 20 \%\right), 373\left(20, M^{+}-H\right), 343\left(30, M^{+}-M e O\right), 283$ $\left(45, \mathrm{M}^{+}-\mathrm{PhCH}_{2}\right), 163(50), 107\left(60, \mathrm{PhCH}_{2} \mathrm{O}^{+}\right), 91$ (100, $\mathrm{PhCH}_{2}{ }^{+}$) (Found: M^{+}, 374.1733. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{6}$ requires M , 374.1729).

M ethyl 2,6-di-0-benzoyl- α-d-mannopyranoside 48. CDAprotected methyl mannoside 45 ($200 \mathrm{mg}, 0.368 \mathrm{mmol}$) was stirred in a 20: 1 mixture of TFA -water (2.1 ml) for 5 min . The solvent was removed under reduced pressure and the residue was chromatographed (gradient elution $\mathrm{Et}_{2} \mathrm{O}$-petrol $3: 1$ to $\mathrm{Et}_{2} \mathrm{O}$) to furnish dibenzoylated 48 ($142 \mathrm{mg}, 96 \%$), $[a]_{D}^{25}+11.6$ (c 1.12 in CHCl_{3}) (Found: $\mathrm{C}, 62.45 ; \mathrm{H}, 5.55 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{7}$ requires C , 62.7; H , 5.5\%); $\delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ [2.38 (1 H, d, J 5.0) and 3.13 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7$) (3-OH, 4-OH)], 3.44 ($3 \mathrm{H}, \mathrm{s}, 1-\mathrm{OM} \mathrm{e}$), 3.84$3.94(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 12.2, 1.3, 6-H H_{A}) , $4.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.7,1-\mathrm{H}), 4.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1$, 2.9, 6-H H_{s}) $5.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.2,1.7,2-\mathrm{H}),[7.20-7.27(2 \mathrm{H}, \mathrm{m})$, 7.41-7.53 (3H, m), 7.58-7.65 (1 H, m), $7.90(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3,1.3)$ and $8.11(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3,1.3)$, ($\mathrm{Ar}-\mathrm{H}$)]; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 55.32 (1-OM e), 63.53 (6-C), [67.94, 70.02, 70.80 and 72.15 (2-C, 3-C, 4-C, 5-C)], 98.89 (1-C), [128.39, 129.54, 129.75, 129.88 (ortho- and meta-C), 129.45 (ipso-C) and 133.32 (para-C) (A rC)], 166.03 and $167.32(2 \times \mathrm{CO})$; m / z (EI) 371 ($\mathrm{M}-\mathrm{M} \mathrm{e}^{+}, 30 \%$), 267 (50), 248 (60), 237 (40), 227 (50), 207 (60), 123 (70), 105 (100), 77 (90), 60 (70) (Found: $\mathrm{M}-\mathrm{M} \mathrm{e}^{+}, 371.1122 . \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{7}$ requires M , 371.1131).

Acknowledgements

We gratefully acknowledge financial support from A grevo (Fellowship to H. W. M. P.), the Deutsche Forschungsgemeinschaft (Fellowship to J. P.) SmithK line Beecham (Studentship to S. L. W.) the Zeneca Strategic Research F und and the Ciba Research Fellowship (to S. V. L.).

References

1 P. Grice, S. V. Ley, J. Pietruszka and H. W. M. Priepke, A ngew. C hem., Int. Ed. Engl., 1996, 35, 197.
2 S. V. Ley, R. D ownham, P. J. Edwards, J. E. Innes and M. Woods, C ontemp. Org. Synth., 1995, 2, 365.
3 S. V. Ley, H. W. M. Priepke and S. L. Warriner, A ngew. Chem., Int. Ed. Engl., 1994, 33, 2290.
4 N. L. Douglas, S. V. Ley, H. M. I. Osborn, D. R. Owen, H. W. M . Priepke and S. L. Warriner, Synlett, 1996, 793.
5 S. V. Ley and H. W. M. Priepke, A ngew. Chem., Int. Ed. Engl., 1994, 33, 2292.
6 Cyclohexane-1,2-dione and 1,1,2,2-tetramethoxycyclohexane are
both available from Avocado Research Chemicals, Shore Road, Port of Heysham Industrial Park, Heysham, Lancashire LA3 2XY, England.
7 M. Bouchra, P. Calinaud and J. G elas, Carbohydr. Res., 1995, 267, 227.

8 A tomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). For details of the deposition scheme, see 'Instructions for A uthors', J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 207/68.
9 M ethyl α-D-mannopyranoside: (a) B. M. Gatehouse and B. J. Poppleton, A cta Crystallogr., Sect. B, 1970, 26, 1761; (b) G. A . J effrey, R. K. M cM ulle and S. T. A kagi, A cta C rystallogr., Sect. B, 1977, 33, 728.
10 M an- $\alpha(1,2)-\mathrm{M}$ an- $\alpha(1)-\mathrm{OM}$ e disaccharide: T. Srikrishnan, M. S. Chowdhary and K. L. M atta, C arbohydr. Res., 1989, 186, 167.
11 K . Bock and J. D uus, J. C arbohydr. Chem., 1994, 13, 513.
12 M . E. Evans and F. W. Parrish, C arbohydr. Res., 1977, 54, 105.
13 (a) J. G. Buchanan, M. E. Chacon-Fuertes, A. R. Edgar, S. J. M oorehouse, D. I. R awson and R. H. Wightman, Tetrahedron Lett., 1980, 21, 1793; (b) J. G. Buchanan, A. R. Edgar, D. I. Rawson, P. Shahidi and R. H. Wightman, C arbohydr. Res., 1982, 100, 75.

14 T. Ogawa and K. Sasajima, C arbohydr. Res., 1981, 93, 67. For the 1-0-allyl compound see also: H. Paulson and B. H elpap, C arbohydr. Res., 1991, 216, 289.
15 J. Thiem, V. Duckstein, A. Prahst and M. M atzke, Liebigs Ann. Chem., 1987, 289. TIPD S protection was developed by M arkiewicz: W. T. M arkiewicz, J. C hem. R es. (S), 1979, 24.

16 P. Grice, S. V. Ley, J. Pietruszka, H. W. M. Priepke and E. P. E. Walther, Synlett, 1995, 781.
17 J. F. Stoddart, Stereochemistry of C arbohydrates, Wiley Interscience, N ew York, 1971, p. 68.
18 V. Waagen, T. K. Barua, H. W. A nthonsen, L. K. Hansen, D. J. Fossli, E. Hough and T. A nthonsen, Tetrahedron, 1994, 50, 10056.

19 For 3,4-dibenzyl-protected rhamnosides see: (a) 0-methyl: V. Pozsgay, J. R. Brisson and H. J. Jennings, C an. J. Chem., 1987, 65, 2764; (b) For S-methyl rhamnoside see: V. Pozsgay and H. J. J ennings, J. Org. C hem., 1988, 53, 4042.
20 H. M. F lowers, C arbohydr. R es., 1982, 100, 418.
21 P. J. G aregg and B. Samuelsson, J. C hem. Soc., Perkin Trans. 1, 1980, 2866.

22 T. L. A rsenault, D. B. M acL ean, W. Zou and W. A. Szarek, C an. J. Chem., 1994, 72, 1376.
23 G. Stork and G. K im, J. A m. Chem. Soc., 1992, 114, 1087.
24 M. Bols, J. Chem. Soc., C hem. C ommun., 1993, 791.
25 D. E. Wright, Tetrahedron, 1979, 35, 1207.

Paper 6/05851E
Received 22nd August 1996
A ccepted 14th O ctober 1996

